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Abstract—This paper presents a methodology designed to
identify extreme wind resource scenarios, which could pose
critical operating conditions for power systems, especially in areas
with high penetration of renewable energies like Chile. Due to its
unique geographic characteristics as the longest and narrowest
country in the world, Chile serves as an ideal case study. The
methodology is applied using historical wind resource data from
three distinct zones—Northern, Central, and Southern Chile. The
methodology comprises five main stages: Data Collection, data
preprocessing, application of multivariate clustering, clustering
of extreme scenarios, and selection of representative scenarios.
These extreme wind scenarios are then leveraged to assess
the performance of wind generators in power production. The
analysis reveals daily wind speed profiles, highlighting how
these extreme scenarios differ from average conditions and
emphasizing the potential challenges in utilizing wind power
during extreme weather conditions.

Index Terms—Extreme events, k-means clustering, renewable
energy, wind resource scenarios.

I. INTRODUCTION

Power systems are undergoing significant transformations
due to the increasing integration of renewable energy sources,
such as solar and wind power, as part of global efforts to
mitigate climate change. Wind energy, in particular, has expe-
rienced substantial growth in recent years. Between 2015 and
2020, the globally installed capacity increased from 426.45
GW to 898.82 GW [1]. This growth is driven by technological
advancements, decreasing costs, and the widespread availabil-
ity of wind resources [2]. However, the inherent variability
and uncertainty associated with wind energy pose significant
challenges in its integration into power systems. As wind
resource variability can fluctuate dramatically, especially under
the influence of climate change, power systems are becoming
increasingly prone to stability and security issues [3]. To
ensure the stability and security of power systems, it is

essential to consider these extreme scenarios of wind resource
variability in both the operation and planning stages. This
requires the development of advanced methods that can prop-
erly represent the variability associated with wind energy,
particularly extreme wind resource scenarios that may have
implications for power system planning and operation [3].

In this context, various clustering techniques have been
employed to address the challenges arising from the variability
of wind energy. These techniques are widely used in power
system applications such as scenario reduction, renewable
resource forecasting, fault detection, and many more. For
instance, in [4], k-means clustering is applied to determine
a set of representative wind and solar scenarios for use
in stochastic unit commitment problems, thereby reducing
computational burden while maintaining operational accuracy.
The self-organization map clustering algorithm (SOM) is also
applied to the same problem in [5]. Similarly, in [6] and [7],
the k-means are used to classify normal and fault conditions,
which are then used for fault detection in distributed networks
and photovoltaic systems. Thus, enhancing the reliability of
the system.

Clustering techniques have also been applied in generation
expansion planning, as discussed in [8]–[10], where scenarios
are reduced to capture the variability of renewable generation,
ensuring that future generation and transmission capacity can
meet the fluctuating demand, and uncertainty associated with
renewable energy. Furthermore, [11] and [12] examine the ap-
plication of clustering for renewable energy forecasting, while
[13] and [14] use clustering for customer net-meter energy
data from residential consumers for optimal sizing of energy
storage optimization and the energy management system of
microgrids. These applications demonstrate its versatility in
various operational contexts. The reader is referred to [15]
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Fig. 1: Methodology for identifying extreme wind resource scenarios.

for a detailed review of the applications of k-means to power
system issues. Despite these advancements, existing method-
ologies often fail to adequately represent extreme scenarios
associated with integrating high levels of wind energy into
power systems, which is critical to ensuring reliable and secure
operation.

In power system operation and planning problems that
involve high levels of integration of wind energy, it is common
practice to use a set of representative scenarios to capture
the variability and uncertainties of wind resources. These
scenarios are typically derived from historical records and
critical inputs in generation expansion planning. Clustering
techniques, such as k-means, are often applied to historical
data to identify a set of wind scenarios that appropriately repre-
sent the variability and uncertainty inherent in wind resources
[5], [9]. An accurate representation of these scenarios is crucial
to anticipate unsafe operating conditions and to ensure that
power systems are adequately developed to integrate high
levels of wind energy [4], [8], [10]. However, traditional
clustering techniques in these contexts often overlook extreme
events associated with wind resources, significantly affecting
the reliability of the system.

In this context, this work proposes a methodology to identify
extreme wind resource scenarios, which could represent criti-
cal operating conditions for power systems. The methodology
is applied to a case study using historical wind resource
information from three zones of Chile (Northern, Central, and
Southern). Chile is a particular choice due to its singular
geographic characteristics (it is the longest and narrowest
country in the world), together with the high penetration
of renewable energies in its power system. Extreme wind
resource scenarios are then used to evaluate the performance
of wind generators in power production in zones with high
renewable energy penetration.

The remainder of the paper is organized as follows: Section
II presents the methodology for identifying the extreme wind
resource scenarios. Section III describes the case study con-
sidered to apply the methodology and obtain the results of the
identification of wind resource scenarios. Section IV provides

the analysis of wind generator performance when considering
extreme wind resource scenarios. Finally, Section V highlights
the main conclusions of the study and future work.

II. METHODOLOGY

Fig. 1 displays the proposed methodology for identifying
extreme wind resource scenarios that are critical for power
system operation and planning, especially in bulk power
systems with high renewable energy penetration. As shown in
the Fig. 1, the methodology comprises 5 main stages, which
are detailed in the following subsections.

A. Data Collection

The first stage involves collecting historical wind speed and
temperature data to provide a thorough analysis of extreme
wind conditions. This is because the ambient temperature
also influences the operation of wind generators. The data
can be obtained from reliable and publicly available meteo-
rological sources, such as weather stations, satellite data, or
other databases [16]–[19], ensuring the dataset encompasses a
sufficiently long period to capture the variability and extremes
in both wind speed and temperature. This timeframe is selected
to represent different seasons and weather patterns, providing
a robust basis for subsequent analysis.

B. Data Preprocessing

The collected data undergoes comprehensive preprocessing
to ensure its suitability for clustering analysis. This process
includes data cleaning and data imputation, where erroneous
or missing data points are addressed through interpolation or
exclusion [20], and outliers that could skew clustering results
are detected and removed. Wind speed and temperature are se-
lected as the primary variables of interest. However, additional
features such as air pressure or humidity can be considered
depending on the specific analysis objectives. To ensure that
each feature contributes equally to the clustering process,
the selected data is normalized, avoiding bias introduced by
differing magnitudes.
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C. Application of Multivariate Clustering

With the preprocessed data, multivariate k-means clustering
is applied [15], utilizing both normalized wind speed and
temperature as input features. The k-means algorithm splits
the dataset into distinct clusters, where each cluster represents
a group of days with similar wind speed and temperature
profiles. The optimal number of clusters, k, is determined
using the Elbow method [21], which identifies the point where
adding more clusters does not significantly improve clustering
performance.

To identify extreme wind scenarios, specific thresholds are
established based on the operational limits of wind turbines.
Extreme scenarios are identified by considering a cut-in speed
of 3 m/s and a cut-out speed of 25 m/s, which correspond to
the operational range of most commercial wind turbines [22].
Temperature extremes are defined using the upper 5% and
lower 5% percentiles, based on the assumption that turbines
typically operate within a temperature range of -10°C to
+40°C. Data that meet these extreme criteria in either wind
speed or temperature are extracted for further analysis. After
this, the daily wind resource profiles to which the data meeting
the established thresholds belong are identified and extracted
in a subset.

D. Clustering of Extreme Scenarios

To the subset of daily wind resource profiles, identified
as extremes in the previous stage, the k-means clustering
algorithm is applied. This step focuses on grouping similar
extreme profiles, providing a detailed understanding of the
variety within extreme scenarios.

E. Selection of Representative Scenarios

Finally, representative scenarios are selected considering the
centroid of each cluster of extreme days. These scenarios are
chosen based on their ability to exemplify the characteristics of
their respective clusters. This selection provides a manageable
set of scenarios for further analysis in power system operation
and planning. The selected extreme scenarios are compared
against average daily wind speeds. For this purpose, the
operation of a wind generator is simulated through typical
wind turbine operating curves to evaluate the impact of the
wind resource scenarios (extreme and average) on electricity
production.

III. CASE STUDY AND RESULTS

In this section, the methodology presented above is applied
to identify and analyze extreme wind resource scenarios that
impact wind power plant operations, particularly in zones with
high penetration of renewable energy sources.

A. Dataset

The dataset were collected from three distinct geographical
locations in Chile: the Northern zone, Central zone, and South-
ern zone. We focused on the locations of three operational
wind farms (WF), one in each zone, as depicted in Fig. 2.

Taltal WF
(-27.10°, -70.14°)

Alena WF
(-37.49°, -72.56°)

Alto Baguales WF
(-45.51°, -72.11°)

Fig. 2: Different geographic locations in Chile considered for
the study.

These zones were specifically chosen due to their diverse cli-
matic conditions, which significantly influence the availability
and variability of wind resources throughout Chile. As of
2024, wind power capacity reached 4,831 MW, accounting
for 14% of the total national capacity with distributions of
2,097 MW in the North, 1,418 MW in the Central, and
1,316 MW in the South according to data from the National
Energy Commission [23]. In addition, projections estimate a
significant increase to over 35 GW of wind power by 2050
(38% of total capacity), as part of the country’s strategy to
achieve carbon neutrality [24].

The dataset consists of hourly measurements of wind speed
and temperature from the period of 2004 to 2016 (totaling
113,952 data for each variable). The data were sourced from
resource assessment tools provided by the Ministry of En-
ergy [16], with wind speed measurements recorded at a height
of 5.5 meters.

B. Data Analysis and Results

The analysis began by examining the daily wind speeds and
temperatures from the datasets corresponding to each zone.
Fig. 3 shows box plots of daily wind speeds for each zone,
illustrating the distribution and variability of wind speeds. For
instance, the Northern zone exhibits a wide range of wind
speeds and notable outliers, indicating highly variable wind
conditions. In contrast, the Central zone exhibits low variabil-
ity with sporadic outliers, suggesting more predictable wind

3
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Fig. 3: Box plot of daily wind speeds: (a) Northern zone, (b) Central zone, and (c) Southern zone.

(a) (b) (c)

Fig. 4: Scatter plot of wind speed against temperature: a) Northern zone, (b) Central zone, and (c) Southern zone.

patterns. Meanwhile, the Southern zone maintains a stable
range of wind speeds, reflecting uniform wind conditions.

Next, the wind speed and temperature data were cleaned
and imputed to address any missing values and remove out-
liers that could distort the clustering results. The data was
normalized to ensure that both features contributed equally to
the clustering process. Fig. 4 displays scatter plots of wind
speed against temperature for each zone, providing insights
into the relationship between these two variables. Notably, the
Southern zone exhibits wind speeds below 3 m/s (cut-in speed)
frequently coinciding with lower temperatures (see Fig. 4(c)).

With the preprocessed data, we applied the multivariate k-
means clustering algorithm to each of the three zones sepa-
rately. Both wind speed and temperature were used as input
features, allowing the algorithm to identify clusters of days
with similar environmental conditions. Fig. 5 is an elbow plot
derived from the clustering analysis of the Southern zone, used
to determine the optimal number of clusters. This plot helps
in identifying a cut-off point where the addition of another
cluster does not significantly improve the within-cluster sum
of squared errors (SSE).

Fig. 6(a) shows a scatter plot of normalized wind speed
and temperature in the Southern zone, color-coded by clusters
identified through k-means clustering. This figure also high-
lights wind speeds classified as extreme scenarios, based on
cut-in speed of 3 m/s, along with temperatures in the top and
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Fig. 5: Elbow plot for Southern zone data.

bottom 5% percentiles, as detailed in Section II-C.
Fig. 6(b) illustrates a box plot of the extreme wind speeds

identified in Fig. 6(a) for the Southern zone. Interestingly, it
shows that while the medians decrease, they follow the same
trend as the original data depicted in Fig. 4(c).

After identifying the extreme wind speed scenarios, we
further refined our analysis by clustering similar days within
each extreme scenario subset. This additional round of k-
means clustering allowed us to group days that shared similar
characteristics of extreme wind speeds. Fig. 6(c) illustrates

4
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Fig. 6: Extreme scenarios for Southern zone: (a) Scatter plot
of wind speed against temperature, (b) Box plot of daily wind
speeds, and (c) Clusters of extreme wind speeds.

the daily profiles of these clustered extreme wind speeds,
alongside the profiles of each centroid for the Southern zone.
This visualization aids in understanding the typical patterns

of extreme wind, which can have varied implications for wind
power generation.

Finally, we selected the lower centroid of subset of extreme
profiles as the representative wind resource extreme scenario.
This process was also performed for the North and Central
zones to obtain representative scenarios for each zone. Fig. 7
shows the selected lower centroids of extreme wind scenarios
alongside the average wind profile of the original dataset
for each zone. This comparison highlights how the extreme
scenarios deviate from average conditions and underscores the
potential challenges in wind power utilization during extreme
conditions.
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Fig. 7: Representative wind extreme scenarios versus and
average resource profiles. Northern zone (blue), Central zone
(green), and Southern zone (red).

IV. EVALUATION OF THE IMPACT OF EXTREME SCENARIOS
ON WIND GENERATOR OPERATION

To evaluate the impact of wind resource scenarios (ex-
treme and medium) on electricity production, typical operating
curves are used to simulate the operation of the wind farms
shown in Fig. 2. In the case of Taltal, this wind farm consists
of 33 Vestas V112 wind turbines of 3.3 MW each [25],
totaling a gross installed capacity of 99 MW. Then, the wind
resource profiles (extreme and average) are used and applied
to the power curve of the Vestas V112 wind turbine. Note
that the wind data are measured at the height of 5.5 meters,
so it is necessary to correct them by the power law profile
equation. This requires the hub height of the wind generator,
which for Taltal is 140 meters. After this, 24 hours of wind
farm operation is simulated and the daily energy produced is
quantified using each wind resource profile.

Analogously it is performed for Alena WF considering that
it comprises 18 Nordex N119 wind turbines of 4.8 MW each
and the hub height is 164 meters [26], and Alto Baguales WF
consists of 3 wind turbines of 0.66 MW each and the hub
height is 160 meters.

Table I shows the daily energy produced with the two wind
resource profiles for each WF considered in the case study.
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TABLE I: Daily energy production for each wind farm by
zone.

Wind resources scenarios
Zone Average Extreme Difference

(GWh) (GWh) (%)
Taltal WF 686.72 1.44 99.79
Alena WF 518.07 0.00 100

Alto Baguales WF 5.21 0.00 100

As you can see in the Table, there is a considerable reduction
in the wind energy produced as expected.

V. CONCLUSIONS

The application of the proposed methodology to the Chilean
case study successfully identified and validated extreme wind
resource scenarios across the Northern, Central, and Southern
zones. The use of multivariate k-means clustering, incorpo-
rating both wind speed and temperature data, proved to be
a robust approach for capturing the complex environmental
conditions that characterize extreme wind events. The wind
energy produced considering extreme scenarios is significantly
lower than when considering typical average profiles. The
resulting scenarios provide critical insights for power sys-
tem operation and planning, particularly in the context of
increasing renewable energy penetration. Overall, the proposed
methodology provides a systematic framework for identifying
and analyzing extreme wind resource scenarios, contributing
to more informed decision-making in power system operation
and planning.

ACKNOWLEDGMENT

This work was supported by the SERC Chile FON-
DAP/CONICYT grant number 1523A0006, the ANID BE-
CAS/DOCTORADO NACIONAL 21191290, and the Schol-
arship SENESCYT/ARSEQ-BEC-006295-2018.

REFERENCES

[1] Our World in Data. [Online], Available: https://ourworldindata.org/.
Accessed: 2024-08-22.

[2] S. Zhang, J. Wei, X. Chen, and Y. Zhao, “China in global wind power
development: Role, status and impact,” Renewable and Sustainable
Energy Reviews, vol. 127, p. 109881, 2020.

[3] D. Zhang, Z. Xu, C. Li, R. Yang, M. Shahidehpour, Q. Wu, and M. Yan,
“Economic and sustainability promises of wind energy considering the
impacts of climate change and vulnerabilities to extreme conditions,”
The Electricity Journal, vol. 32, no. 6, pp. 7–12, 2019.

[4] L. Qian, S. Lin, B. Zhou, W. Wang, X. Bian, F. Li, and D. Li, “Stochastic
unit commitment based on energy-intensive loads participating in wind
and solar power consumption,” IET Renewable Power Generation,
vol. 18, no. 4, pp. 589–603, 2024.

[5] D. Ortiz-Villalba, J. Vega-Herrera, J. Llanos-Proaño, and C. Mayol-
Cotapos, “Stochastic unit commitment with transmission constraint
using self-organized maps (som) for scenarios reduction,” in 2018 IEEE
International Autumn Meeting on Power, Electronics and Computing
(ROPEC), pp. 1–6, IEEE, 2018.

[6] S. D. Roy and S. Debbarma, “A novel oc-svm based ensemble learning
framework for attack detection in agc loop of power systems,” Electric
Power Systems Research, vol. 202, p. 107625, 2022.

[7] A. Et-taleby, Y. Chaibi, M. Boussetta, A. Allouhi, and M. Benslimane,
“A novel fault detection technique for pv systems based on the k-means
algorithm, coded wireless orthogonal frequency division multiplexing
and thermal image processing techniques,” Solar Energy, vol. 237,
pp. 365–376, 2022.

[8] C. A. Moraes, L. W. de Oliveira, E. J. de Oliveira, D. F. Botelho, A. N.
de Paula, and M. F. Pinto, “A probabilistic approach to assess the impact
of wind power generation in transmission network expansion planning,”
Electrical Engineering, pp. 1–12, 2022.

[9] C. Lin, C. Fang, Y. Chen, S. Liu, and Z. Bie, “Scenario generation
and reduction methods for power flow examination of transmission
expansion planning,” in 2017 IEEE 7th International Conference on
Power and Energy Systems (ICPES), pp. 90–95, IEEE, 2017.
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