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Abstract—In industry, accurate monitoring of multiphase
flow—simultaneous flows of oil, gas, water, and other combina-
tions—is crucial for optimizing production processes. This study
investigates the behavior of phase flows, focusing specifically
on the relationship between statistical parameters derived from
PDF and gas flow. By training models using pressure signals
upstream of an orifice plate, the research explores the capability
of artificial neural networks (ANNs) to predict the void fraction
using minimal parameters. Data was acquired from a 25.4 mm
gas-liquid flow circuit over a wide range of flow rates.

Index Terms—two-phase flow, artificial neural network, orifice
plate, vapor-liquid mixture measurement, energy production,
model generalization

I. INTRODUCTION

The measurement of flow parameters in multiphase systems,
particularly the mass flow rate of the transported phases, is
both a critical and challenging aspect. In energy transformation
systems, for example, inadequate measurement can result in
low efficiency or catastrophic failures. In transport processes
involving the transfer of ownership, measurement accuracy is
crucial, especially in terms of calculating transfer taxes.

One of the most important applications is in the oil and
gas industry, where multiphase flows are predominant in
extraction, transport, and processing. The streams transported
in production systems generally consist of oil, water, gas, and
suspended solids.

In the nuclear energy sector, parameters related to coolant
flow, including the mass flow rate of the vapor-liquid mixture,
are vital for the safety analysis of nuclear power plants.
Monitoring properties such as gas fraction and phase flow is
important for efficiency control in power generation. A mea-
surement system capable of collecting such data at multiple
points within the system is crucial for this purpose but can be
complex. An effective approach is to use intelligent systems
to measure multiphase flows (e.g., vapor-liquid flows in a
steam power system) using minimally invasive techniques and
additional parameters, such as wall pressure near singularities.

Multiphase flows exhibit significant complexity, partly due
to the various phase arrangements (patterns) that emerge.
These patterns depend on the flow rates of the phases and

the properties of the constituent fluids. The arrangements of
phases in two-phase flows present an opportunity to extract
attributes from transient signals that are suitable for training a
neural network model for gas fraction measurement.

In multiphase flow, measuring the gas fraction is essential
for applying analytical models and serves as a critical pa-
rameter for production or system monitoring [1]. The model
parameters are trained using inputs derived from a proba-
bility density function (PDF) distribution [2], focusing on
distribution characteristics such as mean, skewness, kurtosis,
and mode. This study aims to determine the most effective
activation function and the minimum number of neurons
required for an application that detects the gas fraction. Each
activation function may demand a varying number of neurons
and computational efforts for further processing. These models
can initially be integrated in parallel with existing monitoring
systems and retrained with subsequent real-world phase flow
data, or with more precise data from a gas fraction sensor at
the same point in the line, given the complexity of methods
for measuring multiphase parameters [1].

II. METHODOLOGY

The raw data, collected over 2 minutes using the setup
illustrated in Fig. 1, undergoes pre-processing, which includes
filtering out noise above 13 Hz and normalizing the data
to ensure consistent scaling across all parameters. The data,
obtained from a 25.4 mm gas-liquid flow circuit over a wide
range of flow rates, is used to train and test the models. The
range of flow rates is unspecified. The characteristics extracted
from the pressure signal include mean, standard deviation,
skewness, kurtosis, and mode. These features are essential for
capturing the dynamics of multiphase flow and will be used
as inputs for the artificial neural networks (ANNs) in the first
case study.

The second set of features includes the values of the PDF
function curve at 30 positions, limited by z-scores between -6
and 6. Normalizing the signal is crucial to aligning different
flow conditions and allowing for closer comparison of their
shapes. The objective of this second set of features is to
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Fig. 1. Experimental circuit with Differential Pressure (DP), Temperature (Temp.), and Absolute Pressure (Press.) Transmitter positions.

gain insights into the model’s performance using additional
information directly from the PDF, alongside the PDF-derived
parameters used in the other set. The analysis focuses on the
complexity of the trained model in extrapolating orifice geom-
etry ratios, as well as the model’s precision in interpolation
(using the same geometry) and extrapolation (using different
geometries) scenarios.

This work also studies the impact of the number of neurons
used in the architecture, with results evaluated using Mean
Absolute Percentage Error (MAPE). To train the ANNs, differ-
ent neuron configurations were tested. Training was conducted
using the Python library TensorFlow, focusing on the objective
function errors MAPE and Mean Squared Error (MSE). The
minimum number of neurons required to achieve acceptable
performance was investigated, starting with a single neuron
and gradually increasing the number using a power of two
approach, specifically 2n where n = 1, 2, 3, ..., 10. The data
was divided into training, validation, and test sets. In the two
scenarios, the features were either whitened or standardized.
The data distribution was 40% for training, 10% for validation
to assist in the training process, and the remaining 50% for
testing. Training was repeated 25 times to calculate the mean
and 90% confidence interval for each model with varying
neuron counts.

Dimensional reduction of the input variables can be evalu-
ated to achieve a smaller set of input parameters [3], thereby
reducing the number of network parameters. The data used
in this study was collected from a 25.4 mm gas-liquid flow
circuit over a wide range of flow rates. A correlation based
on measured phase flow rate data from the literature was
used to determine the labels/targets for parameter training [4],
[5]. Specifically, the correlation for gas fraction proposed by
Lockhart-Martinelli, which was obtained using a 25.4 mm
horizontal gas-liquid flow circuit similar to the one used
in this study, was employed among other options available
in the literature [5]. The study by Lockhart and Martinelli
[6] presents a correlation for horizontal flow in pipes with
diameters ranging from 1.5 mm to 25.4 mm, expressed as,
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A greater number of neurons has the potential to create a
more accurate model by capturing more complex functions
in the data. However, if there is a variation in the geometry
of the orifice, this increased complexity could lead to poorer
model performance. One of the challenges of training com-
plex models is that they often struggle to generalize well to
new or slightly altered conditions. To address this, the work
proposes evaluating the performance of models by varying the
architecture, specifically by adjusting the number of neurons
in the hidden layer, to assess how these changes impact the
model’s ability to generalize.

Two types of changes in the scenario used to develop
the model are highlighted: altering the set of features used
and varying the number of neurons. Additionally, tests were
conducted using two objective functions, MAPE and MSE.
Although these functions sometimes yielded similar perfor-
mance, MAPE consistently demonstrated superior results in
all cases. Therefore, the remaining models were trained using
MAPE as the sole loss function.

III. RESULTS

In the initial study, the following statistical parameters
were used as features: mean, standard deviation, skewness,
kurtosis, and mode of the differential pressure signal. This
set of features, referred to as Feature Set 1, encompasses five
entries. Training was conducted using a dataset with an orifice
geometry of 0.5 diameter ratio (β), but the testing procedures
were applied to both 0.5 and 0.74 geometry ratios under
conditions (pair liquid and gas flow rates) not seen during
training. The performance results of the models are shown in
Fig. 2.

The bottom plot illustrates the results for interpolation test
points, which indicate better performance with 32 neurons
in the hidden layer, achieving an error rate of 15.88%. This
is a strong prediction performance under conditions not seen
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during training. A range of neuron counts from 8 to 256 also
demonstrated good performance. Notably, the architectures
with the two highest neuron counts encountered issues during
training, likely due to the difficulty in creating gradients to
train with so many parameters and few entries.

In the case of geometry extrapolation performance, the
optimal number of neurons using Feature Set 1 was lower than
in the interpolation scenario. Beyond this optimal number, the
precision decreased. This trend may be attributed to the fact
that the global function becomes more complex when using
fewer neurons. The results for the 0.74 geometry, combined
with the interpolation performance for the 0.5 geometry, indi-
cate that increasing the number of neurons does not improve
performance. This suggests that for this feature set, a better
and less complex model is achieved with 8 to 32 neurons.
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Fig. 2. Variation of Neurons used on ANN architecture using Feature Set 1.

Feature Set 1, when combined with values from the PDF
distribution itself—specifically, 30 function points—forms
Feature Set 2 with 35 entries. While Feature Set 1 is derived
from the PDF, this second scenario increases the amount
of information available, but also makes the mapping more
complex.

The second set of features was also used to develop ANN
models by varying the number of neurons, following the same
procedure as the previous scenario. The results of the obtained
models are shown in Fig. 3. Testing on the same trained
geometry revealed that the results were less accurate compared
to those obtained using Feature Set 1. In this case, performance
achieved a minimum MAPE value of 30.50% with 16 neurons,
and then the MAPE increased slightly as the number of
neurons continued to rise, indicating a drop in performance.
Furthermore, in the case of extrapolation to a geometry with a
diameter ratio of 0.74, the predictions were worse than those
obtained using the first set of features. This indicates that
adding features directly from the PDF distribution increased

the difficulty of extrapolation, possibly due to the increased
complexity of the global function. However, in this scenario,
all architectures were able to produce plausible models without
the training issues encountered with Feature Set 1 when using
neuron counts of 512 and 1024.
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Fig. 3. Variation of Neurons used on ANN architecture.

IV. CONCLUSION

This work investigated the impact of the number of neurons
on the performance of ANN models. The obtained models
demonstrated good precision, with a lower bound error of
15.88%. The analysis also examined the complexity of the
models in relation to their ability to generalize to different
orifice geometries. The results indicate that a lower number
of neurons improves the estimation of gas fraction when the
model is applied to a different orifice geometry. This may be
due to the lower complexity of the model, which results in a
function that is more suitable for a wider range of extrapola-
tion. A reflection of this study can be applied orifice plates that
can suffer of erosion or corrosion during life time. The findings
highlight the importance of carefully selecting input features
and neuron counts in ANN models, particularly in applications
where the model must generalize across different physical
scenarios, such as varying orifice geometries. In practice, this
means that simpler models with fewer neurons may be more
reliable in scenarios where generalization is critical, such as
in the monitoring of multiphase flows in energy generation.
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