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Abstract-- As power systems develop, advanced analytical 

methods become crucial for efficient planning and operation. In 

this sense, the Optimal Power Flow (OPF) problem have evolved 

to incorporate, for example, discrete and stochastic variables–

based models. As such, OPF became an effective tool for various 

power system-related studies, including contingency analyses, unit 

commitment or resource allocation. Also, combinatorial 

optimization problems, being both among the most challenging, on 

one hand, and commercially appealing, on the other, prompted the 

development of high-end commercial platforms like Gurobi. 

Hence, this work attempts to take advantage of the latest Gurobi 

Optimizer release features to directly address combinatorial AC 

OPF problems defined as non-convex mixed-integer quadratically 

constrained quadratic programming (MIQCQP). The study 

evaluates numerical performance on transmission network 

maximum peak capacity determination and optimal new 

generation allocation problems for a selection of available test 

cases (IEEE 30 and 118 bus systems), whereas transmission loss 

minimization is also targeted. Tests often yielded useful results in 

less than a few minutes, with effective combined optimization of 

active/reactive power flow and allocation of potential new 

generators to meet demand growth targets, among a set of 

candidate buses. However, constraints selection and parameters’ 

fine-tuning impacted performance, sometimes leading into 

unappealing results. 

 
Index Terms-- AC optimal power flow; Gurobi Optimizer; 

transmission systems; hosting capacity; resource allocation. 

I.  INTRODUCTION 

S power systems expand in both size and complexity, 

deploying more sophisticated analytical methods and tools 

becomes critical for smooth operation and planning, concerning 

both technical and economic aspects. In that regard, the Optimal 

Power Flow (OPF) is an important technique, which originated 

as a derivation of the classical economic dispatch [1], whereas 

its current conceptualization trace back to [2] and [3]. 

An OPF, most essentially, is a numerical optimization 

problem characterized by introduction of the power flow 

equations as constraints, along with other variables and 

equations set to model electric network-related issues [4]. 

 
This work a product of São Francisco Hydroelectric Company’s (CHESF) 

PD-00048-0217 Project, part of Brazilian Electricity Regulatory Agency’s 

(ANEEL) R&D Program.  

Mathematically, this can lead into a wide range of formulations, 

depending on the modeling approach adopted for each element 

considered. Traditionally, due to solution methods and 

processing power limitations, many OPF applications 

prioritized active power flow dynamics, and often depended on 

approximations, relaxations, decompositions and strictly 

continuous variables to ensure tractability [5]-[6]. Further, total 

dispatch cost minimization, given a set of transmission limits, 

were commonly taken as a reference. However, as the 

numerical optimization field progressed, many results were 

taken advantage of to develop more robust OPF frameworks. 

Throughout its development, different classical [7]-[9] and 

modern meta-heuristics [8]-[10] optimization solution 

principals have been adapted to OPF-related applications, 

making the tackling of underling formulations including 

pronounced non-linarites, non-convexities, discreet or 

stochastic elements, multi-stage coupled variables, and so on, 

more appealing. Further, tractability of problems with 

increasingly greater dimensionality were achieved, also due to 

the evolution of microprocessors. As a consequence, the scope 

of OPF expanded, and it became an important technique for 

more complex analysis associated with power systems 

planning, expansion and operation, such as: unit commitment; 

hosting capacity; contingency and security; operational risk 

assessment; system design; optimal resource allocation, among 

others [11]-[12]. Regardless, even a more conventional AC 

OPF is still considered a high-complexity problem, given the 

pronounced non-linearity and non-convexity of coupled active 

and reactive AC power flow equations. Moreover, OPF the that 

absorb combinatorial optimization elements are among the 

most complex literature, recognized as high-end NP-hard [13]. 

Therefore, a vast academic literature encompassing OPF-

related works have been developing over the years [14]. 

However, in the context of applied engineering, well-

established optimization solvers and platforms are typically 

required for the implementation of embedded solutions, 

whether it be dedicated OPF software, or general-use numerical 

optimization toolsets, which depend on proper and compatible 

mathematical models inputs to be explicitly provided by the 
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user [15]. Regardless, when those platforms are taken 

advantage of, computational performance can vary significantly 

depending on the synergy of the solver-formulation-hardware 

match-up, whereas each toolset is based on different underling 

solution methods and problem classes. 

Furthermore, when it comes to combinatorial optimization, 

those are, in one hand, among the hardest known problems, 

mainly due to the complexities arisen by combinatorial 

explosion [16]. On the other hand, they have great commercial 

appeal, due its potential impacts in logistics, routing and 

operations research, prompting the development of high-end 

commercial solvers (e.g., Gurobi, CPLEX, XPRESS) capable 

of providing significantly better performance than available 

alternatives, especially for mixed-inter problems [17]-[21]. 

This can be a deciding factor when evaluating the feasibility of 

a potential application. Historically, the best results obtained 

with such platforms are for strictly defined sets of mathematical 

formulations, such as linear programming (LP), mixed-integer 

linear programming (MILP) or even mixed-inter quadratic 

programming (MIQP), whereas, for the latter, considerations 

regarding non-convexities in the constrains and/or objective 

functions can further limit applications [22].  

In this context, the latest major Gurobi Optimizer release 

(version 11, launched late 2023) [23] brings a promising 

potential to deal with non-convex mixed-integer quadratically 

constrained (MIQCP) and quadratic programming (MIQCQP) 

problems, which, in turn, can become a convenient pathway to 

achieve direct solution of combinatorial AC OPF (i.e., full 

blown AC OPF can be non-convex quadratic if the AC power 

flow equations are in rectangular form). For example, resource 

allocation or even unit commitment could be directly and 

precisely tackled through robust MIQCQP formulations to 

integrate discrete decision making with AC OPF, if the 

computation performance proves to be sufficiently appealing. 

With all the discussed, the authors couldn’t find works 

specifically evaluating the potential of Gurobi Optimizer 

applications to address combinatorial AC OPF problems. In this 

sense, this work seeks to accomplish as much, whereas 

problems associated with transmission network maximum load 

capacity determination and optimal new generation allocation 

(also considering transmission losses minimization under peak 

demand conditions) are taken as references. More specifically, 

main contributions can be highlighted as: i) systematic detailing 

of mathematical formulations compatible with Gurobi 

Optimizer applications, considering combinatorial AC OPF 

problems defined as MIQCP/MIQCQP; ii) numerical 

evaluation of the solution approach for some test cases taken as 

references (standard IEEE 30 and 118 bus systems).  

The remaining of the paper is as follow: section II presents a 

summary of relevant topics for the formulation and solution of 

OPF; section III details the problems focused on, regarding its 

statement, formulation and solution framework; section IV 

discusses the numerical results of examples for different test 

systems and scenarios evaluated; and section V concludes the 

document with discussions and suggestions for future 

developments. 

II.  OPTIMAL POWER FLOW HIGHLIGHTS 

A.  Essential Concepts and Formulations 

The OPF consists of a numerical optimization problem. 

Regarding its most essential features, it can be characterized 

generally as (1)-(3), as typically found in the literature [5]-[8]. 

 

min
𝑥,𝑢

𝑓(𝒙, 𝒖) (1)  

s.t.:  

ℎ𝑖(𝒙, 𝒖) = 0, 𝑖 ∈ ℰ (2)  

𝑔𝑗(𝒙, 𝒖) ≤  0, 𝑗 ∈ ℐ (3)  

Equations (1), (2) and (3) correspond, respectively, to the 

objective function, the i-th equality constraint (ℰ), and the j-th 

inequality constraint (ℐ), all written as a function of x and u, the 

state and control variable arrays, respectively. Note that x and 

u encompass subsets of the electric variables typically 

associated with standard power flow problems, that is, the 

buses’ complex voltage components and generation/load 

active/reactive power balances for the corresponding network.  

Regarding the objective function, different formulations can 

be applied depending on the operational priorities. Common 

targets include minimizing dispatch costs, transmission losses, 

or voltage deviations, all of which are formulated as functions 

of x and u. Multi-objective functions can also be used. 

More specifically, the set of constraints ℰ usually 

encapsulates the active and reactive power balance equations at 

each bus, presented in their rectangular form in (4) and (5), 

respectively, where: 𝒆𝒌 e 𝒇𝒌 are variables for the real and 

imaginary components of the complex voltage at bus k; 𝑷𝒌
𝒈

, 𝑸𝒌
𝒈

, 

𝑷𝒌
𝒍  e 𝑸𝒌

𝒍  are the variables for active (P) and reactive (Q) power 

being generated (g) or consumed (l) at bus k; N is the number 

of buses in the system; m is an index associated with the buses 

adjacent to bus k; and 𝐺𝑘𝑚e 𝐵𝑘𝑚 are parameters associated with 

the element of index km in the conductance and susceptance bus 

matrices. Note that many different simplified balance equations 

can be applied instead of (4)-(5), which are sometimes is 

prioritized to ensure tractability [24]. 

𝑷𝒌
𝒈

− 𝑷𝒌
𝒍 = ∑ {𝒆𝒌(𝐺𝑘𝑚𝒆𝒎 − 𝐵𝑘𝑚𝒇𝒎)

𝑁

𝑚=1

+ 𝒇𝒌(𝐺𝑘𝑚𝒇𝒎 − 𝐵𝑘𝑚𝒆𝒎)}, 𝑘𝜖{1, … , 𝑁} 

(4)  

𝑸𝒌
𝒈

− 𝑸𝒌
𝒍 = ∑ {𝒇𝒌(𝐺𝑘𝑚𝒆𝒎 − 𝐵𝑘𝑚𝒇𝒎)

𝑁

𝑚=1

− 𝒆𝒌(𝐺𝑘𝑚𝒇𝒎 + 𝐵𝑘𝑚𝒆𝒎)}, 𝑘𝜖{1, … , 𝑁} 

(5)  

In turn, the set of constraints ℐ usually includes the desired 

operational limits for the transmission network, such as: limits 

on active (6) or reactive (7) power injection; buses’ voltage 

magnitudes (8); line loading limits (9); and limits on 

transformer taps (10). |𝑽𝒌|, |𝑰𝒌𝒎| e 𝑻𝒌𝒎 correspond to: voltage 

magnitude at bus k; tcurrent magnitude flowing from bus k to 

m; and transformer tap between buses k and m, respectively. 

The parameters on the left and right sides of each inequality in 

(6)-(10) are the minimum/maximum limits for each variable. 
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𝑃𝑘
𝑔,𝑙𝑀𝑖𝑛 ≤  𝑷𝒌

𝒈,𝒍 ≤ 𝑃𝑘
𝑔,𝑙𝑀𝑎𝑥 , 𝑘𝜖{1, … , 𝑁} (6)  

𝑄𝑘
𝑔,𝑙𝑀𝑖𝑛 ≤  𝑸𝒌

𝒈,𝒍 ≤ 𝑄𝑘
𝑔,𝑙𝑀𝑎𝑥

, 𝑘𝜖{1, … , 𝑁} (7)  

|𝑉𝑘
𝑀𝑖𝑛| ≤  |𝑽𝒌| ≤ |𝑉𝑘

𝑀𝑎𝑥|, 𝑘𝜖{1, … , 𝑁} (8)  

𝐼𝑘𝑚
𝑀𝑖𝑛 ≤  |𝑰𝒌𝒎| ≤ 𝑃𝑘𝑚

𝑀𝑎𝑥, 𝑘, 𝑚𝜖{1, … , 𝑁} (9)  

𝑇𝑘𝑚
𝑀𝑖𝑛 ≤  𝑻𝒌𝒎 ≤ 𝑄𝑘𝑚

𝑀𝑎𝑥, 𝑘, 𝑚𝜖{1, … , 𝑁} (10)  

B.  Known Developments and Applications 

Formulations derived form (1)-(10) result in strongly non-

convex Nonlinear Programming (NLP) problems which, given 

(4)-(5), can be treated as non-convex Quadratically Constrained 

Quadratic Programming (QCQP) problems, if the remaining 

constraints are adequately introduced. As mentioned, it is 

always possible to adopt relaxations or approximations, which 

can simplify the resulting formulation, usually at the cost of 

lower accuracy or scope. Furthermore, proper treatment of 

some issues inherent to power system operation require the 

introduction of integer/binary variables, which yields high-

complexity Mixed-Integer NLP (MINLP) problems. As an 

example, an unit commitment-oriented AC OPF can couple 

binary variables representing dispatchable units ON/OFF states 

– uk with (4)-(5), which substantially increases the resulting 

formulation complexity. Note that, in such cases, multiplying 

the parametric limits in (6)-(7) by 𝒖𝒌 is a common modeling 

practice to ensure that generation equals zero only if 𝒖𝒌 = 0, 

and, otherwise, that (6)-(7) maintain its original effect [25]. 

This work focuses on combinatorial AC OPF, whereas the 

issues of transmission network maximum load capacity 

determination and optimal new generation allocation are 

adopted as a reference for evaluation of the Gurobi Opmizier 

toolset. However, many power system-related problems that 

can be addressed through OPF approaches have been explored. 

These can include other dimensions of the system in the 

modeling, beyond the electrical/power flow-related dynamics, 

such as generators’ production or cost functions, in addition to 

possible definition of deterministic or stochastic problems with 

multiple time stages. Moreover, even for well-defined problems 

(e.g., unit commitment, reactive power dispatch), different 

modeling approaches can be adopted, which, in turn, can fall 

into different classes of optimization problems that could be 

tackled through a diverse set of underlying solution principles 

and/or numerical platforms. To provide a better 

contextualization, Table I summarizes recent OPF-related 

works exploring optimization solvers ready application. 

Inspection of Table I suggests that, although adequate to 

achieve encompassing and high-precision AC OPF, direct fully 

non-convex MIQCP/MIQCQP applications are yet not 

commonly found, especially when the main focus lays on the 

discrete decision-making dimensions of the underlying 

problem. This is due to the high-complexity of this formulation 

category, which can often lead into instabilities or prohibiting 

computational burdens. Furthermore, widely available solvers, 

be it commercial or not, are often incompatible with fully non-

convex MIQCP/MIQCQP, or can only tackle it under some 

specific conditions (e.g. CPLEX currently does not accept 

equality constraints in MIQCP problems [39]). Even when fully 

compatible, they can still demonstrate unappealing 

performance [40] for applications with real-life systems. 
TABLE I 

SAMPLE OF OPF APPLICATIONS IN THE LITERATURE BASED ON COMMERCIAL/FREE SOLVERS 

Solver 
Open-

Source? 
Compatibility Applications Examples 

Gurobi X 
LP, QP, QCQP, NLP, SOCP, 
MIP, MILP, MIQP, MIQCQP, 

MISOCP, MINLP. 

▪ Convex OPF formulation through linearization of the power-voltage hyperbolic 

relationship; applies MILP problems [26] 

▪ Radial distribution networks power flow optimization, considering the insertion of 

renewable resources; applies second-order cone programming (SOCP) problems [27] 

▪ OPF with active constraint identification based on deep convolutional neural networks; 

applies LP problems [28] 

▪ Reactive power flow optimization problems using a mixed-integer SOCP (MISOCP) 

approach; based on the combined application of Gurobi, IPOPT, and Mosek [29]. 

CPLEX X 
LP, QP, QCQP, NLP, SOCP, 

MIP, MILP, MIQP, MIQCQP, 
MISOCP. 

▪ Comparison of MIQCQP and MILP formulations for nodal voltage analysis in distribution 

systems [30] 

▪ Economic dispatch optimization based on minimization of: transmission losses (applying 

QCP), fuel usage (applying MIQP), and the valve point effect [31] 

FICO 

XPRESS 
X 

LP, QP, QCQP, NLP, SOCP, 

MIP, MILP, MIQP, MIQCQP, 
MISOCP, MINLP. 

▪ Distribution networks losses minimization, using MIQCQP problems; compares different 

solvers like FICO Xpress and CPLEX [32] 

▪ Comparison of linearized AC models for power flow optimization; applies MILP [33]. 

lp_solve ✓ LP, MIP, MILP, MIQP. 

▪ Minimization of renewable generation costs, with or without transmission losses, through 

optimal current flow analysis; applies MILP problems [34] 

▪ Optimization of e-vehicle charging, for maximizing total amount vehicles of charged 

vehicles for the lowest cost; applies using MILP problems [35]. 

GLPK ✓ LP, MIP, MILP. 
▪ Optimized sizing of combined cooling, heating, and power systems, considering a 

deterministic load scenario; applies MILP problems [36]. 

IPOPT ✓ NLP 
▪ Calculation of AC OPF using an (non-linear programming) NLP framework, with the 

objective aimed at total system supply cost minimization [37] 

MOSEK X 
LP, QP, QCQP, SOCP, SDP, 
MIP, MILP, MIQP, MIQCQP, 

MISOCP. 

▪ Development of an optimization proxy for AC OPF calculation, employing SOCP [38]. 



XV LATIN-AMERICAN CONGRESS ON ELECTRICITY GENERATION AND TRANSMISSION - CLAGTEE 2024 
Mar del Plata, Argentina, November 27th – 29th, 2024 

4 

III.  PROBLEMS STATEMENT AND SOLUTION FRAMEWORK 

Expanding total installed capacity as demand is projected to 

grow is a major concern in power system planning [41], 

whereas a network’s capability of effectively suppling all loads 

also depends on transmission efficiency, topology and 

resources placement. This is greatly influenced by the relative 

allocation between power sources and loads, and the flow 

profile (e.g. bus voltages profiles). Traditionally, large-scale 

generation facilities (i.e., several hundreds to thousands of 

megawatts) have been implemented far from the loads centers, 

sometimes, due to geological or environmental constraints. 

Moreover, as energy resources more easily explored become 

rarer, and loads concentrate in densely populated areas, large-

scale enterprises are driven further away from the consumption 

ends, sometimes eliciting the development of new transmission 

technologies, like HVDC [42]. As an alternative, approaches 

based on high penetration of smaller generation sites, have been 

drawing attention [43]. Regardless, optimized placement of 

new resources, be it transmission lines or generation, not only 

can improve the systems’ capacity, but also reduce technical or 

financial requirements needed to achieve a certain level of 

growth. Nevertheless, this can implicate in the solution of 

highly complex optimization problems, as mentioned.  

Hence, this work uses the optimized allocation of new 

generating sites in previously existing transmission networks to 

conceive combinatorial AC OPF problems as the basis for the 

targeted applications with Gurobi Optimizer. More specifically, 

the problems defined are aimed at: i) given a power system with 

a fixed grid topology, determine the maximum peak demand it 

can accommodate, through the optimized distribution of 

active/reactive dispatch among a combination of both existing 

generators and an undetermined set of potential new sites; ii) 

optimally allocate the new generation set over connections 

points that lead into the minimization of transmission losses for 

the maximum demand growth attainable with respect to the 

baseline. The following topics present, respectively, the overall 

solution framework used, and specifies the mathematical 

formulations. Details regarding the premises adopted to enable 

numerical simulations will be discussed in the next section. 

A.  Solution Framework 

The diagram in Fig. 1 illustrates the underlying solution 

framework applied, which is based on two problems. Both of 

them are stated similarly, but each focuses on one specific 

objective. Firstly, an AC OPF model is derived from a standard 

power flow baseline case, whereas consideration for potential 

connections of new generation sites among a set of previously 

discriminated candidate buses is introduced. This results in a 

MIQCP formulation. This first problem focuses on estimating 

the maximum load burden supported by the network, which is 

achieved by multiplying all baseline active/reactive demands by 

a single gain (DG), and maximizing this gain (i.e., uniform 

growth is considered). Typical OPF constraints are applied, 

whereas binary variables are used to model the introduction (or 

not) of new generation capabilities on selected candidate buses. 

Power factor (PFC) limits can be added, whereas, for those, and 

for (8)-(9) like constraints, equations must be arranged to 

remain quadratic and compatible with the solvers’ inputs.  

In a following step, another AC OPF model is derived 

considering the same baseline circuit parameters, but all 

demands are now fixed to the values attained through DG 

maximization. Otherwise, this problem is similar to the first, 

except the objective function is set to be the minimization of 

total transmission losses, which yields an MIQCQP problem. 

Its solution is meant to rearrange the initial optimal allocation 

of the new generation sites, whereas the optimal active/reactive 

dispatch for a given configuration is treated implicitly to ensure 

the maximum demand target settings are fulfilled. 

 

 
 
Fig. 1. Reference solution framework adopted 

 

For tackling each problem in Fig. 1, Gurobi Optimizer was 

deployed, which is currently one of the most prominent 

optimization solvers in the world [23]. It was originally focused 

on large-scale linear programming (LP) and mixed-integer 

programming (MIP) problems. Since its inception, substantial 

improvements for these classes of problem were achieved [23], 

as well as an expansion in the range of tractable formulations. 

Its most recent major release (version 11, form November 2023; 

other minor versions have followed), the product supplier 

suggests that convex and non-convex problems with increasing 

levels of complexity can be solved reliably and with appealing 

performance, including for the MIQCQP type [44], which, as 

shown following formulations, include full blown 

combinatorial AC OPF applications. The platform has different 

programming interfaces in C++, Python, MATLAB, and others.  

B.  Mathematical Formulations 

The MIQCP problem associated with the first step indicated 

in Fig. 1 is given by (11)-(36), where variables are in bold. 

max 𝑫𝑮 (11)  

s.t.:  

𝐷𝐺𝑀𝑖𝑛 ≤  𝑫𝑮 ≤ 𝐷𝐺𝑀𝑎𝑥 (12)  

𝐸𝑀𝑖𝑛 ≤  𝒆𝑘 ≤ 𝐸𝑀𝑎𝑥 , ∀𝑘 (13)  

𝐹𝑀𝑖𝑛 ≤  𝒇𝑘 ≤ 𝐹𝑀𝑎𝑥 , ∀𝑘 (14)  

𝑃𝑘
𝑀𝑖𝑛 ≤  𝑷𝑘

𝑠 ≤ 𝑃𝑘
𝑀𝑎𝑥 , ∀𝑘 (15)  

𝑄𝑘
𝑀𝑖𝑛 ≤  𝑸𝑘

𝑠 ≤ 𝑄𝑘
𝑀𝑎𝑥 , ∀𝑘 (16)  

|𝑉𝑘
𝑀𝑖𝑛|

2
≤ (𝒆𝑘)2 + (𝒇𝑘)2 ≤ |𝑉𝑘

𝑀𝑎𝑥|2, ∀𝑘 (17)  

(𝑷𝑘
𝑠 )2 ≥ 𝑃𝐹𝐶𝑘

𝐿𝑖𝑚 [(𝑷𝑘
𝑠 )2 + (𝑸𝑘

𝑠 )2], ∀𝑘 (18)  
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[(𝑮𝑘𝑚)2 + (𝑩𝑘𝑚)2] ∙ [(𝒆𝑘 − 𝒆𝑚)2 

               +(𝒇𝑘 − 𝒇𝑚)2] ≤  |𝐼𝑘𝑚
𝐿𝑖𝑚|

2
 , ∀𝑘, ∀𝑚 

(19)  

𝑷𝑘
𝑠 = ∑ [𝒆𝒌(𝐺𝑘𝑚𝒆𝒎 − 𝐵𝑘𝑚𝒇𝒎)

𝑁

𝑚=1

+ 𝒇𝒌(𝐺𝑘𝑚𝒇𝒎 − 𝐵𝑘𝑚𝒆𝒎)], ∀𝑘 

(20)  

𝑸𝑘
𝑠 = ∑ [𝒇𝒌(𝐺𝑘𝑚𝒆𝒎 − 𝐵𝑘𝑚𝒇𝒎)

𝑁

𝑚=1

− 𝒆𝒌(𝐺𝑘𝑚𝒇𝒎 + 𝐵𝑘𝑚𝒆𝒎)], ∀𝑘 

(21)  

𝒆𝑘 = 𝐸𝑠𝑙𝑘 , ∀𝑘𝜖Ω𝑠𝑙𝑘 (22)  

𝒇𝑘 = 𝐹𝑠𝑙𝑘 , ∀𝑘𝜖Ω𝑠𝑙𝑘  (23)  

(𝒆𝑘)2 + (𝒇𝑘)2 = |𝑉𝑘
𝑃𝑉|2, ∀𝑘𝜖Ω𝑃𝑉 (24)  

𝑷𝑘
𝑠 = 𝑷𝑘

𝑔
− 𝑫𝑮 ∙ 𝑃𝑘

𝐿𝑜𝑎𝑑 , ∀𝑘𝜖Ω𝑃𝑉 , ∀𝑘𝜖Ω𝑃𝑄
𝑔𝑒𝑛

 (25)  

𝑸𝑘
𝑠 = 𝑸𝑘

𝑔
− 𝑫𝑮 ∙ 𝑄𝑘

𝐿𝑜𝑎𝑑 , ∀𝑘𝜖Ω𝑃𝑉 , ∀𝑘𝜖Ω𝑃𝑄
𝑔𝑒𝑛

 (26)  

𝑃𝑘
𝐺𝑒𝑛𝑀𝑖𝑛 ≤  𝑷𝑘

𝑔
≤ 𝑃𝑘

𝐺𝑒𝑛𝑀𝑖𝑛 (27)  

𝑄𝑘
𝐺𝑒𝑛𝑀𝑖𝑛 ≤  𝑸𝑘

𝑔
≤ 𝑄𝑘

𝐺𝑒𝑛𝑀𝑖𝑛 (28)  

𝑷𝑘
𝑠 ≤ 𝒖𝑘𝑃𝑘

𝐶𝐵𝑚𝑎𝑥 − 𝑫𝑮 ∙ 𝑃𝑘
𝐿𝑜𝑎𝑑 , ∀𝑘𝜖Ω𝐶𝐵 (29)  

𝑷𝑘
𝑠 ≥ 𝒖𝑘𝑃𝑘

𝐶𝐵𝑚𝑖𝑛 − 𝑫𝑮 ∙ 𝑃𝑘
𝐿𝑜𝑎𝑑 , ∀𝑘𝜖Ω𝐶𝐵 (30)  

𝑸𝑘
𝑠 ≤ 𝒖𝑘𝑄𝑘

𝐶𝐵𝑚𝑎𝑥 − 𝑫𝑮 ∙ 𝑄𝑘
𝐿𝑜𝑎𝑑 , ∀𝑘𝜖Ω𝐶𝐵 (31)  

𝑸𝑘
𝑠 ≥ 𝒖𝑘𝑄𝑘

𝐶𝐵𝑚𝑖𝑛 − 𝑫𝑮 ∙ 𝑄𝑘
𝐿𝑜𝑎𝑑 , ∀𝑘𝜖Ω𝐶𝐵 (32)  

∑ 𝒖𝑘

𝑘∈Ω𝐶𝐵

≤ 𝑁𝑈𝐿𝑖𝑚 (33)  

𝒖𝑘 ∈ {0,1}, ∀𝑘𝜖Ω𝐶𝐵  (34)  

𝑷𝑘
𝑠 = −𝑫𝑮 ∙ 𝑃𝑘

𝐿𝑜𝑎𝑑 , ∀𝑘𝜖Ω𝑃𝑄
𝑙𝑜𝑎𝑑  (35)  

𝑸𝑘
𝑠 = −𝑫𝑮 ∙ 𝑄𝑘

𝐿𝑜𝑎𝑑 , ∀𝑘𝜖Ω𝑃𝑄
𝑙𝑜𝑎𝑑  (36)  

 

Where: 

▪ 𝑘 and 𝑚 are indexes associated with a given bus (k) or 

a bus adjacent to it (m).  

▪ 𝑫𝑮 is the gain modeling a uniform demand growth. 

▪ 𝐷𝐺𝑀𝑎𝑥  and 𝐷𝐺𝑀𝑖𝑛 are 𝑫𝑮 upper / lower boundaries.  

▪ 𝒆𝑘 , 𝒇𝑘 are real / imaginary voltage components at bus 

k (pu). 

▪ 𝐸𝑀𝑎𝑥 , 𝐸𝑀𝑖𝑛, 𝐹𝑀𝑎𝑥, and 𝐹𝑀𝑖𝑛 are  upper / lower 

boundaries of 𝒆𝑘 / 𝒇𝑘 at each bus k (pu) 

▪ 𝑷𝑘
𝑠  and 𝑸𝑘

𝑠  are the active / reactive power balance (i.e., 

injected generation minus drawn load) at bus k (pu) 

▪ 𝑃𝑘
𝑀𝑎𝑥 , 𝑃𝑘

𝑀𝑖𝑛 , 𝑄𝑘
𝑀𝑎𝑥 , and 𝑄𝑘

𝑀𝑖𝑛  are upper / lower 

boundaries of 𝑷𝑘
𝑠  / 𝑸𝑘

𝑠  for each bus k (pu). 

▪ |𝑉𝑘
𝑀𝑎𝑥| and  |𝑉𝑘

𝑀𝑖𝑛| are the upper / lower boundaries of 

the voltage magnitude at bus k (pu). 

▪ 𝑃𝐹𝐶𝑘
𝐿𝑖𝑚 is the PFC limit set at bus k. 

▪ |𝐼𝑘𝑚
𝐿𝑖𝑚| is the maximal current magnitude allowed to 

flow between buses k and m (pu). 

▪ 𝑁 is the total number of buses in the network. 

▪ 𝐺𝑘𝑚 and 𝐵𝑘𝑚 are element of index km in the 

conductance (G) / susceptance (B) bus matrices. 

▪ Ω𝑠𝑙𝑘  is the set of indexes associated with slack buses. 

▪ Ω𝑃𝑉  is the set of indexes associated with PV buses. 

▪ Ω𝐶𝐵  is the set of for candidate buses, (i.e., possibility 

for new generation connections). 

▪ Ω𝑃𝑄
𝑔𝑒𝑛

 is the set of indexes associated with PQ buses 

connected to generators. 

▪ Ω𝑃𝑄
𝑙𝑜𝑎𝑑  is the set of indexes associated with PQ buses 

connected to passive loads only. 

▪ 𝑷𝑘
𝑔

and 𝑸𝑘
𝑔

 are dispatched active / reactive power of a 

previously existing resources connected to bus k (pu). 

▪ 𝑃𝑘
𝐺𝑒𝑛𝑀𝑎𝑥 , 𝑃𝑘

𝐺𝑒𝑛𝑀𝑖𝑛 , 𝑄𝑘
𝐺𝑒𝑛𝑀𝑎𝑥 , and 𝑄𝑘

𝐺𝑒𝑛𝑀𝑖𝑛  are upper / 

lower boundaries for active / reactive power 

dispatches of existing resources at bus k (pu). 

▪ 𝒖𝑘 is a binary variable representing if new generation 

was connected to bus k (uk = 0 means no). 

▪ 𝑃𝑘
𝐶𝐵𝑚𝑎𝑥 , 𝑃𝑘

𝐶𝐵𝑚𝑖𝑛 , 𝑄𝑘
𝐶𝐵𝑚𝑎𝑥, and 𝑄𝑘

𝐶𝐵𝑚𝑖𝑛 are upper / 

lower boundaries for active / reactive power dispatch 

new generation connected to bus k (pu), when uk = 1. 

▪ 𝑁𝑈𝐿𝑖𝑚 is the maximum total amount of new 

connections allowed. 

▪ 𝑃𝑘
𝐿𝑜𝑎𝑑  , and 𝑄𝑘

𝐿𝑜𝑎𝑑  are parameters for load drawn at bus 

k (pu), according to the baseline case. 

 

The objective function is given by (11), targeting 

maximization of overall demand supported by the network. As 

for the constraints, (12)-(16) are the main variables boundaries, 

whereas (17)-(19) are operational limits regarding: acceptable 

voltage magnitude for each bus (17), buses’ equivalent PFC 

limits (18), and current magnitude limits through the branches 

(19). Those constrains don’t use approximations, but were 

formulated so the resulting equations are in rectangular form, 

quadratic and containing no fractions with variables on the 

denominator, to ensure compatibility with the solver. 

Moreover, (20)-(21) correspond to the active and reactive 

power balance equations (with power flow equations in 

rectangular form), whereas (22)-(24) fix voltage values at 

controlled buses, that is, the real and imaginary components at 

the slack bus (22)-(23) and the magnitude at PV buses (24).  

Furthermore, (25) couple active power flow equations in (20) 

to the generation/load balance in PV buses and PQ buses 

connected to generators. Complementary, (26) does the same in 

the case of reactive power. Additionally, (27)-(28) represent the 

possible dispatch ranges for buses with existing resources (PV 

or PQ). Further, (29)-(32) couple active / reactive power flow 

equations in (20)-(21) to the generation / load balance in buses 

where there could be new generation or not, whereas (33) limits 

the total amount of new sites allowed, and (34) indicates that 

binary variables represent the statuses (i.e., new connection / no 

new connection) at candidate buses. Finally, (35)-(36) couple 

active / reactive power flow equations in (20)-(21) with the load 



XV LATIN-AMERICAN CONGRESS ON ELECTRICITY GENERATION AND TRANSMISSION - CLAGTEE 2024 
Mar del Plata, Argentina, November 27th – 29th, 2024 

6 

balance in strict PQ buses (this include transfer buses, in which 

power drawn in set to zero). 

In turn, the MIQCQP problem associated with the follow-up 

step in Fig. 1 is given by (37)-(39). Note that most variables and 

constraints are similar to the presented before, the main 

difference being that DG is reduced to a parameter set by the 

results of the first problem. Therefore, (38) simply highlights 

the constraints that remain identical to the first step, whereas 

(39) highlights the ones in which similar equations are applied, 

except for the value of DG being fixed. Regarding the objective 

function, it is set up to compute the total transmission losses 

precisely, as the residual sum of the AC power flow equations 

for all buses. This results in a challenging formulation, suited to 

evaluate the solver’s robustness. 

min ∑ 𝑷𝑘
𝑠

∀𝑘

 (37)  

s.t.:  

(13)-(24), (27)-(28), (33) (38)  

(25)-(26), (29)-(32), (34)-(35) (39)  

IV.  NUMERICAL EVALUATIONS 

The problems discussed in Section III were implemented and 

tested with the latest minor release of the Gurobi solver (11.0.3, 

July 2024) [44], under an academic license. The Python API 

was adopted as the modeling interface, with the aid of Spyder 

IDE 5.4.3 (Python 3.11) running within an Anaconda 2.5.4 

environment. All simulations were executed on a Windows 10, 

Intel Core i5-9400 CPU@2.90GHz/8.00GB RAM computer. 

Regarding the test beds, the IEEE 30 bus and 118 bus standard 

cases were used, whereas the circuit and baseline power flow 

data were derived from Matpower 8.0, which is refereed to for 

detailing of the model’s parameters [45]. Nevertheless, as some 

of the information necessary to fully set up the targeted 

problems was unclear, incomplete or unavailable, premises 

were adopted to enable the applications.  

The following topics detail each case and discuss the results 

obtained separately, however, some considerations were 

similar, such as: i) to prevent unrealistic results, existing 

generators maximum dispatch capacities are estimated to values 

relative to their baseline case; ii) the potential introduction of 

new generation sites privileges small-scale resources (only one 

new facility is permitted per bus); iii) only busses with some 

load and no previously existing generation are regarded as 

candidates; iv) the maximum running time for optimization was 

set to 200s; vi) the gap between lower and upper objective 

bonds, which is used as a precision/convergence criterion to 

terminate execution, was set be lesser then 10-2. 

A.  30 Bus Case Set up and Results 

In the IEEE 30 bus baseline case, there are 5 PV buses, all 

characterized by generating units, and the slack bus, whereas 18 

buses were set as candidates. In the standard power flow 

baseline, the dispatches range, approximately, from 20MW to 

60MW, with buses’ equivalent PFC ranging from 0.48 to 0.96. 

Hence, existing generators active power limits are set between 

1.5x and 0.2x of its baseline (except for the slack bus, set 

between 2.0x and 0.0x), with the reactive power limits being 

adjusted so that the PFC equivalent in the PV buses, at 

maximum generation, could be accommodated within the 

baseline range. In turn, new units, when added, are set to 

dispatch between 5MW and 30MW, with reactive power limits 

being -18Mvar and 18Mvar (i.e., regardless of dispatch, it was 

initially considered the resulting PFC equivalent in these units’ 

connection buses should also be above 0.8, inductive or 

capacity). Voltage magnitudes in all buses are limited between 

0.95pu and 1.05pu, with voltage controlled busses fixed at 

baseline values. All branches’ current magnitudes limits are set 

to 1.0pu. For transfer buses, PFC and power balance limits 

parameters are all set to zero. Initial active / reactive loads 

parameters are all identical to the baseline case.  

It is important to observe that these considerations are, in 

some measure, arbitrary, and could artificially curtail of inflate 

the network transmission capacity, including due to excessive 

constraining of reactive power flow ranges. However, given 

this study prioritizes the evaluation of the adequacy of the 

solution toolset for the given application, this should not 

substantially impact the nature of the analysis realized.  

Therefore, a series of (11)-(36) type problems are initially 

solved, considering increasingly higher values for the NULim 

parameter (33), and 1.0 ≤ DG ≤ 5.0, mainly to observe: 

maximum demand gain progression as more units are added, 

and the processing time progression as the combinatorial search 

space is altered by the reparametrizing of (33). The optimality 

gap after a solution is found or when the time limit expires are 

also noted. Fig. 2 summarizes those results.  

 
Fig. 2. DG maximizing in the 30 bus case 

 

 The results highlighted in Fig. 2 illustrate the highest 

processing time to solve a problem in this set was under 10s 

(which occurred with NULim = 0, meaning only previously 

existing generator’s dispatches are optimized) with most gaps 

reaching approximately 0.0%. Naturally, the resulting 

formulation for a 30 bus system, despite being a combinatorial 

AC OPF, is relatively small, totaling only few hundred 

variables and constraints. Furthermore, it can be noted that, as 
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the NULim is relaxed, the maximum DG and the total amount of 

new generation allocated increase, whereas the processing time 

was reduced. Nevertheless, all of them reached a plateau 

without further allocation of new resources. That is, even for 

NULim = 18, the solver only chose to add 9 new units. In turn, 

the maximum demand gain sopped progressing with only 4 new 

connections, reaching DG = 1.51.  

Therefore, the follow up problem (see Fig. 1) is set up to 

minimize transmission losses for DG fixed at 1.51x, whereas 

NULim = 4 (i.e., the minimum amount of new resources allocated 

to achieve DG = 1.51 in the first problem). This yielded 4 new 

generators connections, totaling 2.83MW in transmission 

losses. Also, total processing time was 1.93s and the gap 

approximately 0.0%. Note that, in the initial problem, since 

transmission losses are disregarded, a different candidate bus 

set is chosen totaling 4.76MW in losses, although 4 new 

generators are also added (when NULim = 4). Table II compares 

resource allocation in each case. Note that both the buses 

chosen to connect new recourses and the dispatch distribution 

at maximum demand conditions are significantly different. 
TABLE II 

TRANSMISSION LOSS MINIMIZATION FOR THE 30 BUS CASE (BASE IS 100MW) 

Bus N° (Initial) Pg/Qg (pu) Bus N° (Final) Pg/Qg (pu) 

1 (Slk) 0.46 / -0.15 1 (Slk) 0.11 / 0.02 

2 (PV) 0.75 / 0.35 2 (PV) 0.64 / 0.28 

13 (PV) 0.30 / 0.13 13 (PV) 0.48 / 0.11 

22 (PV) 0.32 / 0.40 22 (PV) 0.32 / 0.40 

23 (PV) 0.16 / 0.11 23 (PV) 0.06 / 0.02 

27 (PV) 0.18 / 0.13 27 (PV) 0.36 / 0.10 

3* (New) 0.30 / 0.18 7** (New) 0.30 / 0.18 

4* (New) 0.30 / 0.16 8 (New) 0.09 / 0.18 

8 (New) 0.09 / 0.18 15** (New) 0.30 / 0.15 

24 (New) 0.05 / 0.16 24 (New) 0.23 / 0.14 

  

It is important to highlight that the maximum demand 

capacity observed was, primordially, a consequence of 

transmission constraints, especially with respect to the buses 

voltage magnitudes. This indicates that further increase could 

be achieved if more encompassing reactive power flow 

optimization measures were considered. One convenient way to 

evaluate that within the simulation framework developed is to 

loosen the PFC and reactive power boundaries associated with 

newly allocated resources and its buses.  

Therefore, to complement the analysis, several simulations 

analogous to the ones which results are presented in Fig. 2 were 

performed for different 𝑃𝐹𝐶𝑘
𝐿𝑖𝑚 (18), 𝑄𝑘

𝐶𝐵𝑚𝑎𝑥 (31) and 𝑄𝑘
𝐶𝐵𝑚𝑖𝑛 

(32) values. In general, those tests presented similar 

characteristics to the initially observed, regarding processing 

time, convergent optimality gaps and the plateaus for DG 

increase and maximum new connections allocated. An overall 

maximum DG of approximately 1.75 was achieved, for 

𝑃𝐹𝑘
𝐿𝑖𝑚 ≠ 0 and 𝑄𝑘

𝐶𝐵𝑚𝑎𝑥/𝑚𝑖𝑛
 magnitudes set to 30Mvar (in this 

case, NULim = 7 was associated with DG reaching a plateau).  

However, a few comments are important. Firstly, in some 

cases, the solver failed to resolve the MIQCQP problems 

associated with the follow up step, and transmission losses 

optimization was not achieved. This is possibly related to the 

heightening of the numerical instability of (37) for scenarios in 

which more complex reactive power flow set ups can be 

explored. Moreover, when 𝑃𝐹𝑘
𝐿𝑖𝑚 = 0 in the MIQCP problems 

of the first step, a deterioration of both possessing time (over 10 

fold increase, in most cases) and optimality gaps was observed 

(which settled around 1%, on average). Thirdly, also for 

𝑃𝐹𝑘
𝐿𝑖𝑚 = 0, the plateau for new generation allocation and 

maximum DG increased to 16 and 3.45, respectively. All of 

these indicate that the results returned by the solver should be 

more carefully validated. Regardless, in this particular test case, 

no bus has any baseline loads higher the new generators limits, 

therefore, given transmission and minimum generation 

boundaries are met, it should be expected that the solver will 

attempt to supply as much demand as possible locally, adding 

new resources in most or all candidate buses, which could yield 

substantially higher DG values.  

Those preliminary results already hint that, although capable 

of dealing with the complex combinatorial AC OPF, the 

problems statement and formulation approaches, along with 

proper parametrizing, can substantially impact the solvers’ 

performance and the results quality. Also, the introduction of 

precise transmission losses minimization (MIQCQP) seems to 

be substantially more unstable than finding overall maximum 

hosting capacity (MIQCP). 

B.  118 bus case set up and results 

 The IEEE 118 bus standard case was also used. In this case, 

there are 53 PV buses (35 of which are based on synchronous 

compensators and the remaining on generating units), whereas 

54 buses were set as candidates. Similar as before, the standard 

power flow baseline features were considered to tune the 

parameters applied, which were as following: all existing 

generators/compensators reactive power limits were set to be 

between -1.2pu and 1.2pu; generator active power limits were 

set as 0.8x to 1.2x the baseline case (including the slack bus), 

note that the limits in (27) are set to zero to model synchronous 

compensators; PFC equivalent limits in all buses were set to 0.2 

(inductive or capacitive), except for transfer or PV-synchronous 

buses; minimum and maximum voltage magnitude limits are 

0.94pu and 1.06pu, respectively, for all nodes, with voltage at 

controlled buses fixed at baseline values; and current 

magnitudes limits were set to 5.0pu in all branches. This time, 

new generation sites, when connected, must dispatch between 

0.15pu and 0.75pu of active power and -0.45pu and 0.45pu of 

reactive power.  

Analogous to the first test case, a series of (11)-(36) type 

problems are initially solved, considering increasingly higher 

values for the parameter NULim (33), and 1.0 ≤ DG ≤ 5.0. Fig. 3 

summarizes those results.  
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Fig. 3. DG maximizing in the 118 bus case 

 

It can be observed form Fig. 3, that the overall profile of the 

results can elicit similar observations to the ones made 

regarding previous case (see Fig. 2). Total processing times 

fluctuated around 20s to 100s, whereas the maximum amount 

of new generator (even after NULim = 54) reach a plateau at 37 

new units, whereas the maximum DG stopped increasing with 

only 24 new connections, reaching up to 1.31. However, there 

is a marked diminishing return effect, since maximum DG 

already reaches approximately 1.29 with only 15 connections. 

Optimality gaps remained close from zero.  

Also, it is important to highlight the non-linear increase in 

computational cost. That is, the 118bus case, with a few 

thousand variables and constraints, is only a few times larger 

the first problem, however, all processing times were 

consistently over 10 times higher, which suggests that this type 

of application could be unappealing or even intractable for 

larger networks (over thousands of buses), or multi-stage 

problems. 

Once more, a follow up step was applied to minimize 

transmission losses through reallocation of the new generation 

sites introduced. Hence, similar to Table II, Table III compares 

resource allocation in each step. For consciences, original 

generators/compensator at the PV buses were omitted. 

Regarding the results in Table III, DG is fixed at 1.31x the 

baseline, whereas NULim = 24 (i.e., the minimum amount to 

achieve the DG plateau in the first step problem). This yielded 

24 new connections, totaling 92MW in transmission losses (the 

initial case was 133MW). Also, total processing time was 30s 

and the gap approximately 0.0%.  
TABLE III 

TRANSMISSION LOSS MINIMIZATION FOR THE 118 BUS CASE 

Candidate Bus 

 Nº (Initial) 
Pg/Qg (pu) 

Candidate Bus 

Nº (Final) 
Pg/Qg (pu) 

3 (New) 0.69/0.09 7 (New) 0.75/0.03 

17 (New) 0.62/0.05 13 (New) 0.75/0.22 

29 (New) 0.64/0.10 14 (New) 0.75/0.01 

33 (New) 0.65/0.06 22 (New) 0.66/0.17 

39 (New) 0.66/0.06 29 (New) 0.75/0.08 

41 (New) 0.68/0.08 35 (New) 0.75/-0.02 

Candidate Bus 

 Nº (Initial) 
Pg/Qg (pu) 

Candidate Bus 

Nº (Final) 
Pg/Qg (pu) 

47 (New) 0.25/0.24 39 (New) 0.75/0.10 

48 (New) 0.61/0.22 41 (New) 0.75/0.12 

50 (New) 0.22/0.05 45 (New) 0.75/0.35 

51 (New) 0.75/-0.45 47 (New) 0.65/-0.06 

53 (New) 0.75/0.05 52 (New) 0.63/0.13 

57 (New) 0.15/0.00 53 (New) 0.75/0.15 

58 (New) 0.15/0.00 57 (New) 0.66/0.05 

60 (New) 0.75/0.45 60 (New) 0.75/0.45 

67 (New) 0.15/-0.45 75 (New) 0.75/0.12 

75 (New) 0.29/0.08 79 (New) 0.75/0.45 

79 (New) 0.67/0.11 84 (New) 0.51/0.15 

97 (New) 0.59/0.26 94 (New) 0.75/0.45 

106 (New) 0.33/0.14 108 (New) 0.75/0.03 

108 (New) 0.56/0.04 109 (New) 0.75/0.06 

109 (New) 0.62/0.04 114 (New) 0.58/0.05 

115 (New) 0.63/0.11 115 (New) 0.60/0.09 

117 (New) 0.64/0.17 117 (New) 0.52/0.10 

118 (New) 0.64/0.12 118 (New) 0.75/0.19 

V.  CONCLUSIONS 

This work explored the application of advanced 

combinatorial optimization techniques using the Gurobi 

Optimizer to solve small to medium OPF problems. The study 

evaluated maximum generation capacity and transmission 

losses minimization in IEEE 30 and 118 bus standard case 

systems, demonstrating both the effectiveness and limitations 

of using commercial solvers in such contexts. 

The results indicated that, although Gurobi can handle the 

underlying MIQCP and MIQCQP problems in the tested 

applications, the quality of solutions and computational 

performance are significantly influenced by the problem 

formulation and parameterization. The study showed that as 

generation limits and reactive power flow constraints are 

relaxed, the solver could achieve higher demand capacities and 

lower losses, albeit at the cost of increased processing time and, 

in some cases, higher optimality gaps. Moreover, a limited 

scalability potential was observed for larger systems, as the 

increase in processing time and solution complexity grew 

pronouncedly from the 30-bus to the 118-bus cases. 

Therefore, this study contributes to the understanding of the 

potential and challenges of applying combinatorial 

optimization techniques in AC power systems, highlighting the 

importance of careful problem formulation and precise 

parameterization to achieve efficient and reliable results. Future 

research could explore hybrid methods or decomposition 

techniques to improve scalability and computational efficiency 

in larger networks. 
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