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 

Abstract-- Technical energy losses in power systems are an 

inevitable phenomenon that occur due to transformer impedance, 

conductor resistance, equipment losses, line reactance, and phase 

imbalance. Minimizing these losses is crucial for system 

efficiency. This work presents an innovative approach using 

artificial neural networks (ANN) to obtain complete curves of 

real and reactive power losses in power systems subjected to 

contingencies. The distinguishing feature of this methodology lies 

in the speed with which all curves of the system are obtained, 

both under normal operating conditions and in contingency 

situations (simple or severe). The main advantage of using ANN 

models is their ability to capture the nonlinear characteristics of 

the system, thus avoiding iterative procedures. The results 

demonstrated that the ANN performed satisfactorily, with a 

mean squared error in training below the specified value. For the 

samples that were not part of the training, the network was able 

to estimate 99% of the real and reactive power losses within the 

established range, with residuals around 10−3 and an accuracy 

rate also of approximately 99% between the desired and obtained 

output. 

 
Index Terms— Continuation method, Artificial intelligence, 

Technical energy losses, Estimation, Loading margin. 

I.  NOMENCLATURE 

ANN – Artificial Neural Network. 

MLP – Multilayer Perceptron. 

Ydes – Desired Output. 

Yob – Obtained Output. 

MSE - Mean Square Error. 

CP – Critical Point. 

CPF - Continuation Power Flow. 

PF - Power Flow. 

EPS - Electric Power Systems. 

LM - Loading Margin. 
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TL - Transmission Lines. 

ONS - National Electric System Operator. 

WSCC - Western System Coordinating Council. 

Pa - Total Real Power Losses. 

Pr - Total Reactive Power Losses. 

II.  INTRODUCTION 

LECTRICITY is an essential resource worldwide, with 

continuity and quality of supply being fundamental to our 

quality of life [1]. Currently, the increase in demand, 

combined with the deregulation of the electricity sector and 

restrictive policies on the construction of new transmission 

lines and hydroelectric plants, has led power systems (PS) to 

operate close to their operational limits, i.e., near the critical 

point (CP). Additionally, the scarcity of rainfall often results 

in energy rationing, especially in countries like Brazil, where 

60% of the demand is met by hydroelectric power [2]. 

Systems operating close to their limits are more prone to 

contingencies. In this context, security analysis is crucial to 

identify contingencies that may impact the system. An 

electrical system faces numerous contingencies, but few are 

severe enough to cause instability [3]. 

Static voltage stability analysis, which involves P-V and Q-

V curves to determine the loading margin, is the main tool in 

contingency studies. Continuation power flow (CPF) with 

parameterization techniques [4] – [6] is the method used to 

obtain these curves, allowing for the complete acquisition of 

P-V curves using the appropriate parameter. It is known that 

the Western System Coordinating Council [7] requires 

companies to maintain a safe loading margin of 5% for active 

power in any single contingency (N-1), and 2.5% for double 

contingencies (N-2). 

These challenges have motivated the electric sector to 

invest in tools to improve power generation, transmission, and 

distribution systems [8]. One of these tools is the artificial 

neural network (ANN) [9] – [11]. Reference [8] shows 

proposed using a learning algorithm called extreme learning 

machine (ELM) [15] to predict the voltage stability margin 

more accurately and efficiently. The model inputs are system 

operational parameters and loading direction, and the output is 

the voltage stability margin. Using the algorithm, the mean 

percentage error was only 3.32%, and the mean error was only 

0.0495, results that are satisfactory for practical use. 
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Reference [9], a pattern recognition ANN was developed to 

classify the operating conditions of a power transformer. The 

network was able to classify the samples with a 98% accuracy 

rate of the 815 samples presented and with 100% accuracy in 

validation. Reference [10], an artificial neural network, 

specifically a Multi-layer Perceptron, was employed to predict 

total real and reactive power losses in electrical systems in 

pre-contingency condition only. The results obtained, using 

datasets from IEEE systems with 14, 30, and 57 buses, showed 

satisfactory performance, with a mean squared error of around 

10−4 and a coefficient of determination (R2) of 0.998. In 

validation with 20% of the data that was not part of the 

training, the network demonstrated effectiveness, with a mean 

squared error around 10−3. Reference [11] proposed an ANN 

(Artificial Neural Networks) approach for obtaining complete 

P-V curves of power systems subjected to contingencies. Two 

networks were presented: the MLP (multilayer perceptron) 

and the RBF (radial basis function). The results showed that 

the ANN performed well, with a mean squared error (MSE) in 

training below the specified value. The network was able to 

estimate 98.4% of the voltage magnitude values within the 

established range, with residuals around 10−4 and a success 

rate of approximately 98% between the desired and obtained 

output, with the RBF network performing better than the MLP 

(Multilayer Perceptron). 

Promising results were also found by Aydin and [13], 

where the ANN reproduced the same results with high 

accuracy and speed compared to conventional voltage stability 

calculation methods. The loading parameter and voltage 

stability margin index were calculated using eight different 

input variables and fourteen different training functions, 

allowing the identification of the fastest and most effective 

training function. 

In this context, this work presents an innovative approach 

compared to the aforementioned studies for obtaining real and 

reactive power loss curves in pre- and post-contingency 

scenarios. It is proposed to use artificial neural networks 

(ANN) to estimate these technical losses and, consequently, 

the loading margin of a system not only under normal 

operating conditions but also subjected to simple or severe 

contingencies. 

III.  METHODOLOGY 

The system analyzed in this study is the IEEE 14-bus 

configuration, as illustrated in Fig. 1. The 1890 samples used 

for training and validation were obtained using the method 

described in [4]. Each sample consists of 6 data points: 4 input 

data for the ANN, which include the loading factor λ, the real 

and reactive power generated at the slack bus (Pg
slack and 

Qg
slack), and the branch number (transmission lines or 

transformers); and 2 output data points, representing the total 

real and reactive power losses of the system. 

The IEEE 14-bus system has 20 branches, as shown in Fig. 

1. Ninety samples were generated for each branch removed 

from the system, representing the applied contingency. 

Removing branch 1 (r1) from the system results in a severe N-

2 contingency (double contingency), causing a significant 

reduction in the system's loading margin, as indicated in the 

results. The other contingencies are classified as simple (N-1). 

In this study, the symbol N-0 refers to the system without 

contingency, that is, the pre-contingency P-V curve (r0). 

 

 
Fig. 1. IEEE 14-bus system with respective branches r. 

 

The Artificial Neural Network (ANN) used was a 

feedforward multilayer perceptron [14], trained with the 

backpropagation algorithm [15]. The network structure 

consists of three layers: an input layer with 4 neurons, a 

hidden layer with 10 neurons, and an output layer with 2 

neurons, as illustrated in Fig. 2. The Matlab® software [16] 

was employed for both data preparation and results generation. 

 

 
Fig. 2. ANN used in this work. 

 

The value of uk (1) represents the sum of the products of 

the inputs x by their respective weights W, plus the bias. The 

bias increases the degrees of freedom, allowing the neural 

network to better adapt to the provided knowledge. 
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After determining the value of uk, it is necessary to 

calculate the activation function f(uk) to obtain the output. In 

this work, the hyperbolic tangent function (2) was used for the 

hidden layer, while the linear function (3) was employed for 

the output layer: 
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where λ is an arbitrary constant representing the inclination of 

the curve. 



XV LATIN-AMERICAN CONGRESS ON ELECTRICITY GENERATION AND TRANSMISSION - CLAGTEE 2024 
Mar del Plata, Argentina, November 27th – 29th, 2024 

3 

uuf )(                                     (3) 

IV.  RESULTS 

Table 1 and Figs. 3, 4, and 5 present the results of the 1890 

samples used for training and validation. The configuration 

consisted of 1701 samples for training (90%) and 189 samples 

for validation (10%). Fig. 3(a) shows the mean squared error 

(MSE) during training and validation. The iterative process 

was stopped at the 19th iteration when one of the specified 

values in Table 1 was reached, with a training value of 

0.000858 and a CPU time of 2 seconds (Intel(R) Core i7 

2.20GHz processor and 16 GB RAM), indicating good 

training performance of the network. The great advantage of 

using ANN models is their ability to capture the nonlinear 

characteristics of the studied system, avoiding iterative 

procedures. For samples not included in the training phase, 

i.e., the validation phase, the MSE was 0.0036841. Table 1 

also presents the R2 (correlation) values for the two phases of 

the network. The R2 value in the training phase was 0.9994, 

indicating that the network was well-trained and there was no 

significant difference between the desired and obtained values 

in the classification of the 1701 samples (approximately 98% 

correlation between the output Yob and the desired output 

Ydes). For the validation phase, the R2 value was 0.9963. 

 
TABLE I 

SPECIFIED AND ACHIEVED VALUES IN THE TRAINING AND VALIDATION PHASES 

OF THE ANN 

ANN Specified Values Achieved Values 

Iterations 100 19 

Time (s) 60 2 

Performance 

(MSE) Training 
0.001 * 0.000858 

Correlation (R2) 1.0 0.9994 

Performance 

(MSE) Validation 
0.001 0.0036841 

Correlation (R2) 

Validation 
1.0 0.9963 

* Achieved criterion. 

 

Fig. 3(b) presents a histogram of the errors (difference 

between the obtained output (Yob) and the desired output (Ydes 

= target)) with 20 intervals for the 1890 samples (2x1890 data 

points) during the training and validation phases. It is 

observed that the errors in both training and validation phases 

are close to zero, which explains the good performance shown 

in Fig. 3(a). 

Fig. 4 presents the total real and reactive power losses for 

pre-contingency (r0) and all 20 contingencies (r1, r2, r3, ..., 

r20) of the IEEE 14-bus system, i.e., the desired (Ydes) and 

obtained (Yob) outputs in the two phases of the network (100% 

of the samples) as a function of the loading factor λ, the real 

and reactive power generated at the reference bus (Pg
slack and 

Qg
slack), and the branch number. A high similarity between the 

outputs is observed. 

 

 
(a) 

 
(b) 

Fig. 3. Training and validation of the ANN, (a) performance (MSE), (b) error 

histogram (Ydes – Yob) with 20 intervals for the 1890 samples. 

 

The total real and reactive power losses for each phase of 

the ANN can be seen in Fig. 4. In the training phase, 

considered the most important part of the process, the network 

learns to provide responses based on the desired output (target 

to be followed), becoming capable of estimating data that 

were not part of the training. Fig. 4 illustrates the total real and 

reactive power losses for all 1890 samples, covering all 

system contingencies. In this analysis, we compare the desired 

output (Ydes) with the obtained output (Yob) using the Artificial 

Neural Network (ANN) in both the training and validation 

phases. 

When observing the results, a remarkable correspondence 

between the desired and obtained outputs can be noted, 

highlighting the model's effectiveness in replicating the 

expected system behavior throughout the training process. 

This similarity indicates a high performance of the ANN, 

emphasizing its learning and generalization capabilities 

concerning the analyzed contingencies. 

Fig. 5 presents only the samples used in the validation 
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phase, that is, those that were not part of the network's 

training. These results show that the ANN was able to 

accurately estimate the total real and reactive power losses by 

using only the input data provided, without any direct 

influence from the training dataset. 

 

 
Fig. 4. Total real and reactive power losses (Pa and Pr) for all applied 

contingencies (all 1890 samples), desired output (Ydes) vs obtained output 

(Yob) via ANN. 

 

 

 
Fig. 5. Total real and reactive power losses (Pa and Pr) for all applied 

contingencies (189 samples in the validation phase), desired output (Ydes) vs 

obtained output (Yob) via ANN. 

 

Fig. 6 presents the total real power losses (Pa) curves for 

all system contingencies as a function of the loading factor λ, 

showing the complete λ-Pa curves. This analysis allows us to 

observe the correspondence between the desired outputs (Ydes) 

and the outputs obtained (Yob) by the Artificial Neural 

Network (ANN). 

It is evident that the curves generated by the ANN closely 

follow the expected curves, highlighting the model's accuracy 

in capturing the relationship between the loading factor and 

active power losses across all system contingencies. The 

observed similarity confirms the effectiveness of the ANN in 

replicating the desired behavior, even under different 

operational conditions represented by the analyzed 

contingencies. In the first plot of Fig. 6, two pre-contingency 

(N-0 or r0) curves are presented. The blue line (Ydes) 

represents the desired output obtained through conventional 

continuation power flow, while the red line (Yob) shows the 

output obtained via the Artificial Neural Network (ANN). 

 

 
Fig. 6. Total real power losses (Pa) for all applied contingencies (all 1890 

samples), desired output (Ydes) vs obtained output (Yob) via ANN. 

 

Fig. 7 shows the desired output for the total real power 

losses (Pa) in relation to the contingency branches and the 90 

points along the λ-Pa curve. In contrast, Fig. 8 illustrates the 

output for Pa obtained via ANN, using the same parameters. It 

is noted that the difference between the desired results and 

those obtained by the ANN is virtually imperceptible. 

0 200 400 600 800 1000 1200 1400 1600 1800 
0 

0.5 

1 

1.5 

0 200 400 600 800 1000 1200 1400 1600 1800 
0 

1 

2 

3 

4 

P
r 

]p
.u

.]
  

  
  
  

  
  
  

  
  
  

  
 P

a
 ]

p
.u

.]
 

Samples 

Ydes Target Yob via ANN (MLP) 

1 1.2 1. 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1. 1.6 
0 

0.5 

1 

1.5 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1. 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

r0 r1 

r3 
r4 r5 

r6 
r7 

r8 

r2 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.5 2 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

r10 r11 

r12 r13 r14 

r15 

r16 r17 

r9 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

1 1.2 1.4 1.6 
0 

0.5 

1 

r18 r19 r20 

Loading factor λ 

T
o

ta
l 

re
al

 p
o

w
er

 l
o

ss
es

 (
P

a
) 

[p
.u

.]
 

Ydes post contingency curve 

Yob via ANN (MLP) - post contingency curve 

Ydes - pre contingency curve 

0 20 40 60 80 100 120 140 160 180 
0 

0.5 

1 

0 20 40 60 80 100 120 140 160 180 
0 

1 

2 

3 

4 

P
r 

]p
.u

.]
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

P
a

 ]
p

.u
.]

 

Samples 

Ydes Target Yob via ANN (MLP) 



XV LATIN-AMERICAN CONGRESS ON ELECTRICITY GENERATION AND TRANSMISSION - CLAGTEE 2024 
Mar del Plata, Argentina, November 27th – 29th, 2024 

5 

 

 

 
Fig 7. Desired Pa as a function of contingent branches and points, (a) 2D 

graph, (b) 3D graph. 

 

 

 
Fig 8. Pa obtained via ANN as a function of contingent branches and 

points, (a) 2D graph, (b) 3D graph. 

 

Figure 9 presents the difference, or error, between the 

desired outputs and those obtained by the ANN for total real 

power losses (Pa). It is observed that the error values are 

minimal, remaining close to zero. These results indicate that 

the neural network was able to replicate the desired outputs 

with great accuracy, demonstrating the model's effectiveness 

in predicting active power losses. The low magnitude of the 

errors reflects the robust performance of the ANN in the task, 

reinforcing its reliability as a modeling and forecasting tool. 

 

 
Fig 9. Desired output minus output obtained via ANN, i.e. Error = Ydes – Yob 

for total real power losses (Pa). 

 

Fig. 10 presents the total reactive power losses (Pr) curves 

for all system contingencies as a function of the loading factor 

λ, showing the complete λ-Pr curves. Examining the second 

plot related to contingency r1, three curves can be identified: 

one (dashed) represents the pre-contingency (N-0) curve for 

the loading factor λ versus reactive power (Pr), while the other 

two curves correspond to the post-contingency conditions, 

representing the desired output (blue line - Ydes) and the 

obtained output (red line - Yob). Contingency r1 refers to the 

outage of the branch between buses 1 and 2 (N-2), as 

illustrated in Fig. 1. 

A significant reduction in the loading margin is evident 

compared to the base case value, with the loading factor λ at 

the critical point (CP) of post-contingency reduced to 0.9810, 

as obtained by the Artificial Neural Network (ANN). This 

reduction reflects the ANN's ability to identify and quantify 

the impact of the contingency on the system's capacity. 

Fig. 11 displays the desired output for total reactive power 

losses (Pr) in relation to the contingency branches and the 90 

points along the λ-Pr curve. Conversely, Fig. 12 presents the 

output for Pr generated by the ANN, using the same 

parameters. It is also observed that the discrepancy between 

the expected results and those obtained by the ANN is almost 

non-existent. 

Finally, Fig. 12 illustrates the error between the desired 

values (Ydes) and the obtained values (Yob) for total reactive 

power losses (Pr). The analysis of this figure reveals a notable 

similarity between the predicted and desired outputs, 

highlighting the effectiveness and accuracy of the proposed 

model. These results, once again, reinforce the robustness of 
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the model and its ability to provide highly reliable predictions. 

The proximity of the error values to zero demonstrates that the 

model not only achieves high accuracy but also effectively 

replicates the expected patterns, solidifying its practical utility. 

 

 

 
Fig. 10. Total reactive power losses (Pr) for all applied contingencies (all 

1890 samples), desired output (Ydes) vs obtained output (Yob) via ANN. 

 

 

 
Fig 10. Desired Pr as a function of contingent branches and points, (a) 2D 

graph, (b) 3D graph. 

 

 

 
Fig 11. Pr obtained via ANN as a function of contingent branches and 

points, (a) 2D graph, (b) 3D graph. 
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Fig 12. Desired output minus output obtained via ANN, i.e. Error = Ydes – Yob 
for total reactive power losses (Pr). 

V.  CONCLUSIONS 

This work presented a methodology using Artificial Neural 

Networks (ANN) to determine the total real and reactive 

power losses, as well as to obtain the complete λ-Pa and λ-Pr 

curves of the power system subjected to contingencies, based 

on the loading factor λ, the real and reactive power generated 

at the reference bus (Pg
slack and Qg

slack), and the branch number. 

The results show that the neural network was well-trained, 

with a mean squared error (MSE) of 0.000858 at the 

nineteenth iteration, a training time of 2 seconds, and an R2 

value for the training of 0.9994, indicating that the obtained 

output was quite close to the desired output. In the validation 

phase, for samples that did not participate in the training, the 

MSE obtained was 0.0036841, close to the specified limit of 

0.001, resulting in a loading margin very close to the desired 

value. Overall, the ANN proved to be an efficient tool for 

determining energy losses. 
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