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Abstract—The distribution systems expansion planning prob-
lem is a relevant and highly complex topic in the field of optimiz-
ing the operation and planning of electrical energy systems. The
mathematical model of this problem is a mixed-integer nonlinear
programming problem with combinatorial characteristics. When
reliability requirements are considered, this optimization problem
becomes more complex. There are different ways to consider
reliability when planning the expansion of electrical energy
distribution systems. In this work, an alternative approach is
proposed. Traditionally, distribution systems are expanded taking
into account specified reliability indices. In the proposal pre-
sented, reliability guarantees the greatest topological diversity of
the system, which, therefore, can present high-reliability indices
for specified indices and other unspecified performance criteria.
Test results are shown using data from a 54-bus system.

Index Terms—Distribution systems expansion planning, mixed-
integer programming, optimization of electrical systems, radial
topology, reliability.

I. INTRODUCTION

The primary distribution systems expansion planning
(DSEP) problem is a highly relevant topic for the operation
and optimal planning of the distribution system. The primary
distribution network refers to the electrical network that starts
at the substation and ends at the low-voltage transformers.
From these transformers, the secondary distribution network
supplies residential and commercial loads.

In the DSEP problem, given the current network, demand
data for a planning horizon, and the possibilities of construct-
ing new substations, reinforcing existing substations, replacing
existing conductors, and constructing new conductors in new
branches, the goal is to expand the system at the lowest cost
while ensuring that the expanded system operates adequately
for the new demand values of the planning horizon. The
optimal solution should specify the new substations to be built,
the substations to be reinforced, the conductors to be replaced,
and the new conductors to be constructed in new branches,
detailing the characteristics of each component to be built.

A typical feature of the DSEP problem is that the system
must operate in a radial topology for various reasons. This
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is an old paradigm that remains valid today. Until recently,
the DSEP problem was expanded by finding only one final
topology. However, in practice, a distribution system is built
weakly meshed but, for safety reasons, operates radially. The
strategy of finding an optimal radial topology presented two
problems in the specialized literature: (1) it was not possible
to find a complete mathematical model because the radial
topology requirement could not be represented as simple
algebraic constraints, and (2) the proposal to find an optimal
radial topology did not align with the logic of a distribution
system that should be built in a meshed manner but operate
in a radial topology. The first problem was solved in the
past decade with various formulations to represent the radial
topology requirement using simple algebraic relationships, as
presented in [1], [2]. The other issue represents a current and
relevant research topic addressed in this work.

Many publications find only an expansion plan that is
merely an optimal radial expansion topology. These publica-
tions have used almost all existing optimization techniques
from the specialized literature. Such proposals are presented
in [3]–[7]. The proposal in [3] presents a genetic algorithm,
while [4] offers a mathematical model used as a basis for
more complex problems, and [5] introduces a sophisticated
constructive heuristic algorithm. On the other hand, [6], [7]
solve the DSEP problem using complete models with the radial
topology constraints incorporated into the mathematical model
and commercial optimization solvers.

As mentioned earlier, current relevant research on the DSEP
problem involves finding an optimal expansion plan in a
meshed topology. In this context, the optimization strategy
should indicate the radial topology for normal operating
conditions and the constructed branches that should remain
open during normal operation but can be used for abnormal
conditions, such as during maintenance or in case of faults
when some system branches need to be deactivated for safety.
In this context, besides finding an optimal expansion plan in
terms of expansion costs, the expanded network must meet
reliability criteria.

Two different strategies exist to expand the distribution
system under this new paradigm. The first strategy involves
expanding the distribution system in two consecutive phases.
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In the first phase, the radial topology is found using the
same strategies as the previous paradigm, i.e., the traditional
method used in references [3]–[5]. In the second phase,
extra branches are added using some reliability-related logic.
Obviously, this strategy cannot find optimal expansion plans
because it separates a problem that should be optimized
integrally into two consecutive phases. Therefore, this strategy
is used when, for some reason, it is impossible to solve the
problem integrally. Hence, this strategy is used when no known
mathematical model exists or when the known mathematical
model cannot be solved for complex instances using efficient
optimization solvers. The second strategy involves expanding
the distribution system integrally, considering expansion costs,
and incorporating reliability requirements, usually adding re-
liability constraints based on indices used to measure the
distribution system’s reliability.

In [8], there is concern about considering reliability. How-
ever, the system is expanded in the traditional way, and
subsequently, the radial topology with the highest reliability
is analyzed. The proposals in [9], [10] show concern for
expansion with reliability, preceding more formal proposals
that consider reliability as part of the expansion process. The
proposals in [11]–[17] represent the most relevant proposals,
according to the authors, for the second optimization approach
of the DSEP problem, i.e., finding the optimal expansion plan
integrally while considering expansion costs and incorporating
reliability requirements in the form of constraints to satisfy
different reliability indices. Notably, the proposals presented
in [12], [17] should be highlighted. Regarding these proposals,
it should be mentioned that the fundamental idea is to find
a highly complex mathematical model and solve it using
an optimization solver. Thus, each reliability index can be
incorporated into the mathematical model as constraints.

The optimization proposal presented in this work follows
the second optimization strategy, i.e., it finds an expanded
meshed network indicating the branches that should operate in
a radial topology during normal operations and the branches
that should remain open but can operate by reconfiguring
the operating topology in atypical cases (during maintenance
or permanent faults in the distribution system). Therefore,
the difference between this proposal and those presented in
[11]–[17] is the way of conceptualizing the reliability of the
expanded system. This proposal assumes that an expanded
distribution network generally adequately addresses system
faults if this expanded meshed system has the highest number
of radial topologies that can be generated from this meshed
topology. For illustration, suppose there is a 50-bus system,
and the expansion proposal has 54 constructed branches. In
this context, the system operates in a radial topology with 49
closed and five open branches. There is a connected graph with
54 branches for such an expansion plan, and it is possible to
find the number of different radial topologies in this graph.
Thus, if there are two expansion plans, Plan A and Plan B,
with 54 constructed branches, then the plan with the highest
number of different radial topologies has higher reliability.
This observation, initially empirical but consistent, is due to

the fact that if a fault occurs that deactivates a branch or a set of
branches, the plan with the highest number of radial topologies
has a greater chance of keeping the system connected through
a radial topology.

The suggested proposal is feasible only with the relatively
recent discovery that it is possible to determine the exact
number of radial topologies in a meshed distribution system.
In other words, for a connected meshed graph, it is possible to
calculate the number of spanning trees (radial topologies) in
that graph [18], [19]. It should be noted that this proposal
prioritizes topological robustness over a specific reliability
index. Thus, the proposal is conceptually very different from
those presented in [2]–[17]. Currently, no mathematical model
incorporates this requirement of the DSEP problem. For this
reason, the optimization proposal consists of two phases: in
the first phase, the traditional mathematical model is solved to
find the optimal radial operating topology, and in the second
phase, a set of branches is added to find a meshed expanded
system with the highest number of different radial topologies.

In summary, this work finds an optimal radial expansion
topology using the traditional mathematical model for this
problem and then adds a specified set of extra branches. These
branches are chosen so the resulting graph has the highest
possible number of radial topologies. This second phase is
solved using a constructive heuristic algorithm.

II. MATHEMATICAL MODEL

A mixed-integer second-order cone programming (MIS-
OCP) mathematical model for the DSEP problem is presented,
which finds the optimal radial operating topology for an
expanded distribution system to meet the demand of a plan-
ning horizon. This allows for constructing new substations,
reinforcing existing substations, replacing existing conductors,
and constructing conductors in new branches, as shown in (1)–
(13).

minimize v =
∑
i∈Ωs
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wi ∈ {0, 1} (12)
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yij,a ∈ {0, 1} (13)

∀ij ∈ Ωc, a ∈ Ωa

The model includes various types of quantities:
• Sets: Ωb is the set of buses, Ωs is the set of substation

buses, Ωc is the set of branches, and Ωa is the set of
conductor types that can be installed on each branch.

• Parameters: Ra, Xa, and Za are the resistance, reactance,
and magnitude of the impedance per km of conductor
type a, respectively, lij is the length of branch ij, PD

i and
QD

i are the active and reactive power demanded at bus i,
Cs

i is the construction or expansion cost of a substation at
bus i, Cra

tij,a is the cost per km of conductor type a, Si is
the capacity of a substation at bus i, Sgn

i is the capacity
of a reinforcement substation at bus i, V and V are the

lower and upper limits of the voltage magnitude at system
buses, tij is the type of existing conductor on branch ij,
and Ia is the current magnitude limit of conductor type
a.

• Variables: V sq
i is the square of the voltage magnitude at

bus i, bij is an auxiliary variable that controls the voltage
drop in a branch when the branch is operating or not,
PS
i and QS

i are the active and reactive power injected by
the substation at bus i, Isqij,a is the square of the current
magnitude on branch ij with conductor type a, Pij,a and
Qij,a are the active and reactive power on branch ij for
conductor type a, yij,a is a binary variable that equals
yij,a = 1 if a conductor type a is constructed on branch
ij and zero otherwise, and wi is a binary variable that
equals wi = 1 if a substation is constructed or reinforced
at bus i and zero otherwise.

The first part of the objective function (1) represents the in-
vestment cost in substations, and the second term corresponds
to the construction and installation costs of conductors, i.e.,
the investment costs in installing and replacing conductors.
Constraints (2) and (3) represent the active and reactive power
balance at each bus of the electrical system, constraints (4)
and (5) represent constraints resulting from the application
of Kirchhoff’s voltage law in the electrical system, constraint
(6) controls the voltage at the ends of an electrical branch ij
using the auxiliary variable bij such that if bij = 0 the branch
ij is constructed and therefore the voltage at the ends of the
branch ij must comply with Kirchhoff’s voltage law, otherwise
it should be relaxed. Constraints (7) and (8) represent the
operational limits of the voltage magnitude at each bus and
the current at each branch, respectively, constraint (9) allows
selecting only one type of conductor when the branch ij
is constructed or operating. Constraint (10) ensures that the
system is expanded to have a number of branches equal
to the number of buses minus the number of substations.
This condition, together with constraint (2), ensures that the
solution found must be radial. Here, |Ωb| is the number of
buses in the system, and |Ωs| is the number of substations
in the electrical system. Constraint (11) ensures that the
power supplied by each substation respects the capacity of
the respective substation. Finally, (12) and (13) indicate the
binary nature of the investment variables wi and yij,a. The
mathematical model of the DSEP problem can be solved using
an efficient commercial solver.

III. EXPANSION WITH RELIABILITY

The proposal of this work involves two phases, as mentioned
earlier. In the first phase, an optimal radial operating topology
is found using the mathematical model from the previous
section. In the second phase, a set of p extra branches must be
added to increase the system’s reliability. The system should
operate with the radial topology found in the first phase under
normal operating conditions, and the p extra branches should
remain disconnected. However, under atypical conditions such
as permanent faults, the system should be reconfigured with
the p branches that can be connected.

3
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An initial proposal is presented to find a weakly meshed
topology from a radial topology to increase the reliability of
an expanded distribution system. The central idea is to add
p extra branches to the previously found topology so that
the weakly meshed system presents the highest number of
radial topologies in the corresponding graph of this distribution
system. The input data for this problem are the radial topology
found using classical optimization and a set of ns candidate
branches for addition, from which p branches must be chosen
so that the expanded system is a weakly meshed system with
the highest number of existing radial topologies in the graph
of this system.

The aforementioned problem can be solved using classical
optimization, a heuristic, or a metaheuristic. In this work, a
constructive heuristic algorithm (CHA) was devised. A CHA
finds a solution, usually of good quality, to a complex problem
through an iterative process where a component of the solution
being constructed is added at each step. The most critical
decision in a CHA is the choice or design of a sensitivity
indicator that identifies the component that should be added
to the solution under construction. Thus, a CHA is simple to
implement and is generally very fast.

For the second phase of the DSEP problem, the imple-
mented CHA takes the following form:

1) Store the radial topology found in phase 1, which
becomes the current topology. Store the ns candidate
branches for addition, called free branches, and choose
the value of p (the number of branches to be added).

2) Check if p branches have already been added to the
current topology. If p branches have been added, then
stop the optimization process. Otherwise, go to Step 3.

3) Find the sensitivity indicator values for each free branch.
4) With the sensitivity indicators found in the previous step,

identify the free branch that should be incorporated into
the current topology. Add this branch to the current
topology and update the set of free branches and added
branches. Return to Step 2.

In the CHA shown above, only the sensitivity indicator must
be designed. Thus, the designed sensitivity indicator is shown
in (14).

ISij = ntrij (14)

where ntrij is the number of radial topologies existing in the
graph of the current topology with the addition of the free
branch ij. Therefore, the free branch ij with the highest ntrij
value should be chosen to be incorporated into the current
topology.

An existing concept in graph theory is used to find the
number of radial topologies existing in the meshed graph of a
distribution system. In [18], the related theory is presented and
analyzed in [19] for the reconfiguration problem. It is a new
paradigm that is still rarely used in optimizing distribution sys-
tems that require a radial topology for operation. The central
issue is that it is possible to find the exact number of radial

topologies in a connected graph (a connected distribution
system [18]) in the form of the Matrix-Tree Theorem.

Matrix-Tree Theorem: Let G be a connected graph and L be
the Laplacian matrix of this graph. The number of spanning
trees (radial topologies) of this graph G equals the value of
any cofactor Lij of L.

The previous theorem allows finding the exact number of
radial topologies in a weakly meshed distribution system. To
do this, the Laplacian matrix L must be constructed, where
each matrix element has the structure shown in (15).

lij =

 degree(i) If i = j
−1 If there is a branch between i e j
0 otherwise

(15)
To find the number of radial topologies ntr, the modified

Laplacian matrix (LM) must be found by eliminating a row
and a column from the matrix L, which will be used in (16)

ntrij = |det(LM)| (16)

Therefore, in the CHA, for each new candidate graph
found with the addition of a new branch, it is possible to
find the number of radial topologies ntrij by calculating the
determinant of a matrix. Thus, for each free branch in Step
3 of the CHA, the value of ntrij of the current graph with
the addition of the free branch ij must be found. In Step 4 of
the CHA, the free branch with the highest value of ntrij is
chosen for addition.

IV. TESTS AND RESULTS

The expansion proposal was applied to the 54-bus system,
whose base topology is shown in Figure 1, and whose com-
plete data can be found in [5]. The CPLEX solver was used
to solve the model written in AMPL. The system has 50
demand buses and four substations, with substations at buses
101 and 102 in the base topology having a capacity of 16.7
MVA and a nominal voltage of 13.5 kV. These buses can be
reinforced with the same capacity. New substations with a
nominal capacity of 22 MVA can be built at buses 103 and
104. The voltage limits at the buses are 0.95 and 1.0 p.u.

Table I shows the data of the base topology of the system’s
branches, where both the existing branches in the base topol-
ogy and the new branches are listed. In the first phase, the
mathematical model found the optimal radial topology. This
radial topology is shown in Figure 2 and Table II. A substation
was also added at bus 103 and another at bus 104, each with a
nominal capacity of 22 MVA. No reinforcements were added
to the substations at buses 101 and 102. In the optimization
process, three branches were reconductored from among the
existing conductors in the base topology, while one of them
was disconnected.

The expansion cost in the first phase was v = 4,788,328.00
USD, with 2 MUSD for the installation of the substation at
bus 103, 2.4 MUSD for the installation of the substation at bus

4



XV LATIN-AMERICAN CONGRESS ON ELECTRICITY GENERATION AND TRANSMISSION - CLAGTEE 2024
Mar del Plata, Argentina, November 27th – 29th, 2024

1 9 10 31 37 43 13 12 11

17 18 19 20

104 2122

30 29

23 24 25 3 4 7 8

33 39 38 44

32

101

28 27 265 6

35 36 10334 41 42 48 49 50

47 46 14

102

40 16 15

452

Existing Substation

Candidate Branch

Existing Branch

Candidate Substation

Load Bus

1

1 1

1

1

1

1

1 1

1

1

1

1

1 1

Fig. 1. Base topology.

104, and 388.328 kUSD for the installation of new conductors
and reconductoring existing ones.

To implement the second phase, the optimization process
must start from the radial topology found in the first phase.
An additional set of branches specified among those not added
in the first phase must be added. Thus, it was chosen to add six
extra branches from the 19 available branches. The CHA added
the branches according to the sequence shown in Table III.
This table shows the sequence in which each branch is added,
starting from the radial topology found in the first phase, and
ntr indicates the number of existing radial topologies in the
current expansion proposal. Therefore, the expanded system
should operate with the radial topology found in the first
phase, and the six branches shown in Table IV should also
be constructed. These branches can operate under atypical
operating conditions to reconfigure the operating topology,
thus providing reliability to the expanded system. Therefore,
the expanded system can operate with 135,877 different radial
topologies.

Finally, the type of conductor must be chosen for the six
branches selected in the second phase. An initial empirical
strategy implemented in this work is to select the type of con-
ductor considering the highest capacity conductor connected to
one of the buses of the added branch. For example, branch 43,

which connects buses 39 and 38, should be of type 1 since
a type 1 conductor connects bus 38. This information was
incorporated into Table IV. The cost of expansion by adding
the six additional branches is 58,050.00 USD.

V. CONCLUSION

In this article, a new strategy was devised to solve the DSEP
problem, considering the reliability of the distribution system
by increasing the system’s reconfiguration capability when
the system graph can generate the highest number of radial
topologies. This proposal differs from the one where reliability
indices are incorporated into the optimization mathematical
model, making the model difficult to solve. The results found
are promising. The presented proposal is inspired by the
possibility of knowing the number of radial topologies in
a connected graph. As this is a first work, many topics
remain to be explored. Therefore, future works should address
topics such as a comparative analysis with other optimization
proposals aiming at performance in terms of reliability, testing
large and highly complex systems by solving the second
phase with a metaheuristic, solving the second phase using a
mathematical model, which means finding this mathematical
model, solving the integrated problem using metaheuristics,
solving the integrated problem by finding a mathematical

5



XV LATIN-AMERICAN CONGRESS ON ELECTRICITY GENERATION AND TRANSMISSION - CLAGTEE 2024
Mar del Plata, Argentina, November 27th – 29th, 2024

TABLE I
BRANCH DATA FOR THE 54-BUS SYSTEM.

Branch i j Type of Branch i j Type of Branch i j Type of
number conductor number conductor number conductor

1 1 101 1 24 22 9 0 47 34 33 0
2 3 101 1 25 23 22 0 48 35 34 0
3 4 3 1 26 24 23 0 49 36 35 0
4 7 4 1 27 25 24 0 50 36 103 0
5 5 4 1 28 8 25 0 51 28 103 0
6 8 7 0 29 27 8 0 52 41 103 0
7 6 5 1 30 26 27 0 53 40 41 0
8 9 1 1 31 28 27 0 54 16 40 0
9 2 1 1 32 28 6 0 55 42 41 0
10 10 9 1 33 30 104 0 56 48 42 0
11 14 102 1 34 29 30 0 57 49 48 0
12 15 14 1 35 43 30 0 58 50 49 0
13 16 15 1 36 37 43 0 59 47 42 0
14 11 102 1 37 31 37 0 60 46 47 0
15 12 11 1 38 10 31 0 61 14 46 0
16 13 12 1 39 43 13 0 62 18 31 0
17 20 19 0 40 45 12 0 63 20 43 0
18 19 18 0 41 44 45 0 64 2 22 0
19 18 17 0 42 38 44 0 65 30 33 0
20 17 9 0 43 39 38 0 66 21 33 0
21 21 18 0 44 32 39 0 67 36 44 0
22 21 104 0 45 33 39 0 68 25 3 0
23 22 104 0 46 8 33 0 69 50 14 0

TABLE II
BRANCHES OF THE RADIAL TOPOLOGY.

Branch i j Type of Cost Branch i j Type of Cost Branch i j Type of Cost
number conductor (USD) number conductor (USD) number conductor (USD)

1 1 101 4 12364 21 21 18 3 13104 48 35 34 1 6540
2 3 101 1 0 22 21 104 4 11500 49 36 35 1 6540
3 4 3 1 0 23 22 104 1 11250 50 36 103 4 11500
4 7 4 1 0 25 23 22 1 10290 51 28 103 4 14352
7 6 5 1 0 26 24 23 1 8430 52 41 103 1 9360
8 9 1 2 11662 28 8 25 1 8430 53 40 41 1 11250
9 2 1 1 0 29 27 8 1 11250 56 48 42 1 7500
10 10 9 1 0 30 26 27 1 10290 57 49 48 1 11250
11 14 102 4 16500 31 28 27 2 10920 58 50 49 1 6540
12 15 14 1 0 32 28 6 1 15000 60 46 47 1 9360
13 16 15 1 0 33 30 104 4 12926 61 14 46 1 10290
14 11 102 1 0 34 29 30 1 9360 62 18 31 1 6540
15 12 11 1 0 37 31 37 1 5610 63 20 43 1 9360
16 13 12 1 0 41 44 45 1 6540 65 30 33 2 8750
17 20 19 1 9360 42 38 44 1 9360 67 36 44 1 8430
18 19 18 1 7500 44 32 39 1 12180 69 50 14 1 5610
20 17 9 1 12900 45 33 39 1 8430

TABLE III
SEQUENCE OF BRANCHES ADDED.

Iteration
1 2 3 4 5 6

Branch 39 (43-13) 27 (25-24) 55 (42-41) 43 (39-38) 38 (10-31) 5 (5-4)
ntr 9 72 504 3528 23128 135877

TABLE IV
BRANCHES ADDED IN PHASE 2.

Branch i j State Type of Branch i j State Type of
number conductor number conductor

5 5 4 1 1 39 43 13 1 1
27 25 24 1 1 43 39 38 1 1
38 10 31 1 1 55 42 41 1 1

6



XV LATIN-AMERICAN CONGRESS ON ELECTRICITY GENERATION AND TRANSMISSION - CLAGTEE 2024
Mar del Plata, Argentina, November 27th – 29th, 2024

1 9 10 31 37 43 13 12 11

17 18 19 20

104 2122

30 29

23 24 25
3 4 7 8

33 39 38 44

32

101

28 27 265 6

35 36 10334 41 42 48 49 50

47 46 14

102

40 16 15

452

Existing Substation

4

1

2 1 1

1

1 1 1

1 1

1

4

Load Bus

1

3

4

1

1

1

1

2

4

1

1

1

1

1

1

1

4

4

1

1 1

1

1

1

1

2

1 1

Constructed Substation

Constructed Branch of the 
Radial Topology

1

11

1

1

1

1

1

1

Existing Branch

Constructed Reinforcement 
Branch

1

1 1

1

1

Reconducted Branch

1

Fig. 2. Final topology.

model for this type of problem and solving this model using
efficient solvers, among others.
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