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Abstract—This paper examines the effects of ground-return pa-
rameters (impedance and admittance) and frequency-dependent
soil electrical parameters on the sequence parameters of sym-
metrical circuits (zero, positive, and negative) in a double-circuit
transmission line, using Nakagawa’s approach. An analysis was
conducted on three distinct transmission towers (Danube, Flat,
and Ton) situated on soil with a low-frequency resistivity of
1,000 Ω.m over a frequency range from 100 Hz to 1 MHz.
The results indicate that zero-sequence resistance and inductance
are significantly greater than those of the positive sequence.
Conversely, positive-sequence capacitance exceeds zero-sequence
capacitance, which varies at high frequencies due to ground-
return admittance. Additionally, coupling factors for individual
circuits and between both circuits were evaluated, revealing that
the coupling factor within one circuit can generally be ignored.
However, the coupling factor for zero-sequence admittance is
substantial, influenced by tower topology and frequency range.
The numerical results highlight the strong magnetic and electric
coupling between circuits in the zero sequence for untransposed
double-circuit overhead transmission lines.

Index Terms—transmission lines, sequence parameters,
ground-return effects, soil modeling, symmetric components

I. INTRODUCTION

Adequate computation of the symmetrical components, and
its sequence parameters, of a transmission line (TL) is essential
for the effective design, operation, and maintenance of power
systems. In this context, the sequence parameters are import
to accurately determine the fault detection and protection
in transmission lines [1]–[5], power flow analysis and line
parameter estimation [6], [7] and harmonics in power quality
studies [8].

This work was supported by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior (CAPES) - Finance code 001 and by São Paulo
Research Foundation (FAPESP) (grant: 2019/01396-1, 2020/10141-4 and
2022/09182-3).

To compute the sequence (zero, positive and negative)
parameters of the transmission line, firstly, the longitudinal
impedance Zℓ and transversal admittance Y t matrices must
be correctly assessed considering the soil on which the TL is
located and the tower geometry.

Regarding the consideration of the soil, this is done through
the ground-return impedance (Zg), the ground-return admit-
tance (Yg) and the soil’s electrical parameters (ρg and εr).
There are several methods used in the literature to determine
the ground-return parameters (Zg and Yg), such as Carson and
Nakagawa [9], [10]. The Carson model is considered a more
conservative approach, as it neglects the displacement currents
in the soil and assumes a constant soil resistivity. In contrast,
the Nakagawa model is seen as a more realistic approach, as it
allows the soil’s electrical parameters to vary with frequency
and takes into account the displacement currents in the soil.

Concerning the tower geometry, the ground wires effect
must be reduced in the Zℓ and Y t matrices using the Kron’s
reduction technique. Subsequently, the sequence impedance
matrices Zsym and Y sym are calculated using the longitudinal
impedance Zℓ and transversal admittance Y t matrices using a
transformation matrix, denoted here as S, which is dependent
on the complex number α = ej120

◦
.

When the n-phase transmission line has a complete trans-
position configuration, the resulting matrices Zℓ and Y t are
symmetrical, having identical mutual elements on the off-
diagonal, i.e. X12 = X13; and identical diagonal elements,
i.e. X11 = X22 = ...Xnn . This symmetry facilitates the com-
putation of the sequence impedance matrices Zsym and Y sym,
where the sequence parameters are readily obtained from the
main diagonal elements and the remaining elements are zero
[11], [12]. On the other hand, when the n-phase transmission
line has a untransposed configuration, the matrices Zℓ and
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Y t might have different self- and off-diagonal elements, due
to the distinct heights and distances between the conductors,
representing the mutual coupling. Consequently, the sequence
impedance and admittance matrices have non zero off-diagonal
elements, meaning that symmetrical sequence is neither mag-
netically nor electrically decoupled in their sequence circuits
[11], [12].

In [8], the authors investigated the sequence parameters
(resistance, inductance, and capacitance) and coupling effects
using symmetrical components for three distinct 110-kV trans-
mission tower topologies (Danube, Flat, and Ton), employing
Carson’s approach, frequency-constant soil parameters, and a
limited frequency range from 50 Hz to 20 kHz. The results
demonstrated a significant dependence of the sequence pa-
rameters on the frequency range and highlighted the necessity
of considering strong coupling between circuits. To the best
of the author’s knowledge, there has been no investigation
in the literature that examines the sequence parameters of
double-circuit transmission lines, considering ground-return
parameters (impedance and admittance) using Nakagawa’s
approach and frequency-dependent soil properties.

This paper investigates the impact of the ground-return
effect and frequency-dependent soil electrical parameters using
Nakagawa’s approach on the sequence parameters (resistance,
inductance, and capacitance) in the symmetrical circuits (zero,
positive, and negative) of a double-circuit transmission line.
Three distinct towers (Danube, Flat, and Ton) located on soil
with a low-frequency resistivity of 1, 000 Ω.m were analyzed
for a frequency range from 100 Hz to 1 MHz. The results
demonstrated that the zero-sequence resistance and inductance
are significantly higher than the positive sequence. However,
the positive capacitance is higher than the zero-sequence
capacitance, which varies at high frequencies due to the
ground-return admittance. Additionally, the coupling factors
for individual circuits and between both circuits are calculated
for the double-circuit transmission lines. Results demonstrated
that the coupling factor within one circuit can be neglected.
However, the coupling factor for the zero-sequence admittance
can be considerable depending on the tower topology and
across the frequency range. These results confirm that the
magnetic and electric coupling between both circuits in the
zero sequence is very strong for untransposed double-circuit
overhead transmission lines.

As a contribution, this work has shown that untransposed
double-circuit transmission lines exhibit strong coupling be-
tween the sequence circuits. These couplings cannot be ne-
glected for untransposed transmission lines, especially if high-
frequency events are involved in the simulations.

II. POWER SYSTEM MODELING

A. Transmission line

The Telegrapher’s equations are a pair of differential equa-
tions that describe voltages (V (ω)) and currents (I(ω)) along

the length of a multi-conductor overhead transmission line as
follows [13]

∂V (ω)

∂x
= −Zℓ(ω)I(ω), (1)

∂I(ω)

∂x
= −Y t(ω)V (ω), (2)

where the longitudinal impedance Zℓ(ω) [Ω/m] and transver-
sal admittance Y t(ω) [S/m] matrices are expressed by

Zℓ(ω) = Z i(ω) +Ze(ω) +Zg(ω), (3)

Y t(ω) =
[
Y −1

e (ω) + Y −1
g (ω)

]−1
, (4)

where ω = 2πf is the angular frequency [rad/s], f is the
frequency [Hz], Z i(ω) is the internal impedance [Ω/m], Ze(ω)
is the external impedance [Ω/m] and Zg(ω) is the ground-
return impedance [Ω/m] associated to the penetrating magnetic
field that generates induced currents into the soil. In (4), Y e(ω)
is the external admittance [S/m] considering a perfect soil and
Y g(ω) is the ground-return admittance [S/m] corresponding
to a correction term for lossy soil with frequency-dependent
electrical parameters that must be added.

1) Ground-return parameters: The ground-return
impedance Zg(ω) can be calculated by

Zgii
(ω) = j

ωµ0

π

∫ ∞

0

e−2hiλ√
λ2 + γ2

g + λ
dλ, (5)

Zgij
(ω) = j

ωµ0

π

∫ ∞

0

e−(hi+hj)λ√
λ2 + γ2

g + λ
cos(rijλ)dλ, (6)

γ2
g = jωµ0[σg + jω(εr − k)ε0], (7)

where µ0 is the vacuum magnetic permeability (µ0 = 4π×10−7

[H/m]), σg is the soil conductivity [S/m], εr is the relative per-
mittivity and ε0 is the vacuum permittivity (ε0 = 8.85×10−12

[F/m]). Regarding the geometrical parameters, hi and hj are
the heights of the conductors i and j in relation to the ground
level [m], rij is the horizontal distance between the conductors
i and j [m] and λ is an integration variable. The k is a
correction factor. If k = 1 in (7), the equations (5) and (6)
are represented by Nakagawa’s approach [10]. Otherwise, if
k = εr, these equations are reduced to Carson’s approach [9].
Regarding the ground-return admittance, Nakagawa proposed
the following expression [10]

Y g(ω) = jω[P g(ω)]
−1, (8)

Pgii
(ω) =

1

πε0

∫ ∞

0

e−2hiλ

λγ2
1

γ2
0

+ α1

dλ, (9)

Pgij
(ω) =

1

πε0

∫ ∞

0

e−(hi+hj)λ

λγ2
1

γ2
0

+ α1

cos(rijλ)dλ, (10)

α1 =
√
λ2 + γ2

1 − γ2
0 , (11)

γ2
0 = −ω2µ0ε0, γ2

1 = jωµ0(σg + jωεrε0). (12)
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2) Electrical parameters of soil: Soil can be represented
by its electrical parameters i.e. magnetic permeability (µg),
resistivity (ρg), and relative permittivity (εr). It is known in
the literature that the resistivity (ρg) and relative permittivity
(εr) are significantly variable with the frequency. However,
the magnetic permeability is assumed equal to the magnetic
permeability of free space (µ0).

This phenomenon is related to the several polarization
processes (molecular, ionic, and electronic) occurring in the
soil particles as the frequency increases. Consequently, when
the frequency dependency is considered on the soil parameters,
the soil’s conductivity increases and the relative permittivity
decreases as the frequency increases. The frequency-dependent
resistivity and permittivity are calculated as closed-form ex-
pressions, being these expressions recommended by CIGRÈ
WG, give as follows [14]

ρg(f) = ρ0
{
1 + 4.7× 10−6f0.54ρ0.730

}−1
, (13)

εr(f) = 12 + 9.5× 104ρ−0.27
0 f−0.46, (14)

where ρ0 is the low-frequency resistivity measured at 100 Hz
[Ω.m]. The soil resistivity and relative permittivity assuming
a low frequency resistivity ρ0 of 1,000 Ω.m is plotted in Fig.
1

Fig. 1: Soil resistivity (in blue) and relative permittivity (in orange)
for a low frequency resistivity ρ0 as a function of frequency.

According to this figure, the soil resistivity ρg is strongly
dependent on the frequency, where the soil becomes more
conductive as the frequency increases and the reduction in
the soil resistivity is more noticeable at the high frequencies.
Furthermore, the permittivity εr decreases for the increasing
frequency due to the several polarization mechanisms occur-
ring in the soil particles [14].

3) Kron’s reduction: The ground wires in a transmission
line (TL) can be represented either implicitly or explicitly
depending on the type of analysis [15]. When using the explicit
representation, the ground wires are considered additional con-
ductors of a given TL. However, in the implicit representation,
the effects of the ground wires (either grounded or isolated) are
reflected on the phase conductors. In this way, the TL is seen as
having only (np) equivalent conductors. Consequently, the lon-
gitudinal impedance and transversal admittance matrices are
reduced (order np×np), which reduces the computational time
for calculating electromagnetic transients in power systems

[15]. In this work, the implicit representation of the ground
wires will be used. Considering that (3) and (4) represent
a multi-phase transmission line with n phases (where n =
np + nw), the longitudinal impedance matrix Zℓ(ω) and the
transversal admittance matrix Y t(ω), both with n×n, can be
organized into matrices expressed in the form [16][

V pp
V ww

]
=

[
Zpp Zpw
Zwp Zww

] [
Ipp
Iww

]
, (15)[

V pp
V ww

]
=

[
P pp P pw
P wp P ww

] [
Qpp
Qww

]
, (16)

where Q are the charges accumulated on the TL [C] and P
is the matrix of Maxwell’s potential coefficients [km/F]. The
subscripts pp and ww are related to the phase conductors
and ground wires, respectively. The subscripts pw and wp
represent mutual elements between the phase conductors and
ground wires. In this case, the sub-matrices corresponding to
the subscripts pw and wp have the property of being transposes
of each other. The impedance and admittance matrices are

Zℓ =

[
Zpp Zpw
Zwp Zww

]
=

[
Rpp + jωLpp Rpw + jωLpw
Rwp + jωLwp Rww + jωLww

]
,

(17)

Y t =

[
Y pp Y pw
Y wp Y ww

]
= jω

[
Cpp Cpw
Cwp Cww

]
= jω

[
P pp P pw
P wp P ww

]−1

,

(18)
where the sub-matrix Zpp (np × np) represents the self and
mutual elements for the phase conductors only, the sub-
matrices Zpw (np × nw) and Zwp (nw × np) represent the
mutual elements between the phase conductors and the ground
wires, and the sub-matrix Zww (nw × nw) represents the self
and mutual elements for the ground wires. Similarly, the same
subscripts apply to the sub-matrices Y pp, Y pw, Y wp, and
Y ww. The element R is the resistance matrix [Ω/m], L is the
inductance matrix [H/m] (both considering the skin effect), and
C is the capacitance matrix [F/m] [17]. When the ground wires
are continuously grounded at each tower structure, and the
tower impedance can be neglected, the voltage drop between
two terminals of a ground wire is approximately zero [16]. In
this case, the voltage drop in the ground wires [V ww] ≈ 0,
and thus (17) and (18) can be rewritten as follows

Z ′
red = Zpp −ZpwZ

−1
wwZwp, (19)

Y ′
red = jω[P pp − P pwP

−1
wwP wp]

−1. (20)

Based on (19) and (20), the reduced matrices for the resistance
R′, inductance L′ and capacitance C ′ are expressed as

R′
red = Rpp −RpwR

−1
wwRwp, (21)

L′
red = Lpp −LpwL

−1
wwLwp, (22)

C ′
red = [P pp − P pwP

−1
wwP wp]

−1. (23)

In (19)-(23), Z ′
red, Y ′

red, R′
red, L′

red e C ′
red are the are

the longitudinal impedance, transversal admittance, resistance,
inductance, and capacitance matrices in their reduced forms,
respectively.

3
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III. SEQUENCE PARAMETERS OF THE TRANSMISSION LINE

The sequence voltage V sym and current Isym for a multi-
circuit transmission line can be expressed as a function the
the transformation matrix S and its respective voltage V and
current I matrices, given by [11]

V = S.V sym, (24)

I = S.Isym, (25)

where V sym is the voltage vector and Isym is the current vector
of the symmetrical components. The transformation matrix S
is given by

S =
1√
3

1 1 1
1 α2 α
1 α α2

 , (26)

where α = ej120
◦
. Replacing (24) and (25) to (1) and (2),

the symmetrical matrices for the impedance (Z′
sym) and

admittance (Y ′
sym) for the double-circuit transmission line can

be expressed as following [11]

Z′
sym =

[
S−1 0

0 S−1

]
Z′

red

[
S 0
0 S

]
, (27)

Y ′
sym =

[
S−1 0

0 S−1

]
Y ′

red

[
S 0
0 S

]
, (28)

where the explicit form of Z′
sym and Y ′

sym are given by [11]

Z′
sym =



ZI
00 ZI

0+ ZI
0− ZI,II

00 ZI,II
0+ ZI,II

0−
ZI
+0 ZI

++ ZI
+− ZI,II

+0 ZI,II
++ ZI,II

+−
ZI
−0 ZI

−+ ZI
−− ZI,II

−0 ZI,II
−+ ZI,II

−−
ZII,I
00 ZII,I

0+ ZII,I
0− ZII

00 ZII
0+ ZII

0−
ZII,I
+0 ZII,I

++ ZII,I
+− ZII

+0 ZII
++ ZII

+−
ZII,I
−0 ZII,I

−+ ZII,I
−− ZII

−0 ZII
−+ ZII

−−

 , (29)

Y ′
sym =



YI
00 YI

0+ YI
0− YI,II

00 YI,II
0+ YI,II

0−
YI

+0 YI
++ YI

+− YI,II
+0 YI,II

++ YI,II
+−

YI
−0 YI

−+ YI
−− YI,II

−0 YI,II
−+ YI,II

−−
YII,I

00 YII,I
0+ YII,I

0− YII
00 YII

0+ YII
0−

YII,I
+0 YII,I

++ YII,I
+− YII

+0 YII
++ YII

+−
YII,I

−0 YII,I
−+ YII,I

−− YII
−0 YII

−+ YII
−−

 , (30)

where they can be organized as structured matrices given by

Z′
sym =

[
ZI ZI,II

ZII,I ZII

]
, (31)

Y ′
sym =

[
Y I Y I,II

Y II,I Y II

]
. (32)

Based on (31), the sequence impedance matrix Z′
sym of

a double-circuit transmission line can be organized as a set
of sub-matrices: The ZI and ZII represents the magnetic and
electric couplings internally related to their own circuit (I or
II), being formed by self elements in the main diagonal, Zc

jj,
and by the mutual elements off the main diagonal Zc

ij for (i,j)
∈ {0,+,−} and c ∈ {I, II}. Furthermore, the sub-matrices
ZI,II and ZII,I are related to the magnetic and electric couplings
between the circuits I and II, represented by self elements in

the main diagonal Z I,II
ii and by mutual elements in off main

diagonal Z I,II
ij . The same pattern is obtained for the sequence

admittance matrix Y ′
sym in (32).

A generic representation of these sequence circuits is il-
lustrated in Fig. 2, showing some of the mutual couplings.
According to this figure, each sequence circuit (I, II) has its
own internal coupling (dashed lines) and external coupling
between both circuits (solid lines). It is worth mentioning that
for ideally transposed double-circuit transmission lines, the
sequence matrices (Z′

sym) and (Y ′
sym) have only non-zero

elements on the main diagonal (Zc
jj ̸= 0 and Y c

jj ̸= 0), for j
∈ {0,+,−} and c ∈ {I, II}. The transmission line parameters
can be explicitly expressed as follows

Z′
ii = R′

ii + jωL′
ii, (33)

Z′
ik = R′

ik + jωL′
ik, (34)

Y′
ii = G′

ii + jωC′
ii, (35)

Y′
ik = G′

ik + jωC′
ik. (36)

The self transmission line parameters- resistance (R′
ii),

inductance (L′
ii) and capacitance (C′

ii) will be investigated
in the further section. The conductance (G′

ii) is neglected.
Additionally, the influence of the mutual elements are also
investigated as a function of the frequency.

IV. NUMERICAL RESULTS

In order to investigate the influence of the frequency-
dependent soil electrical parameters on the sequence pa-
rameters, three distinct transmission lines are considered, as
illustrated in Fig. 3, being denoted as Danube, Flat and Ton, as
detailed in [8]. For this purpose, the ground-return impedance
and admittance are calculated using the Nakagawa’s approach,
using equations from (5) to (12) considering a soil with low-
frequency resistivity ρ0 of 1,000 Ω.m using the expressions in
(13) and (14). The per-unit-length (pul) resistance, inductance
and capacitance, as well as the coupling factors between the
one and both circuits are calculated in the frequency range of
100 Hz to 1 MHz. The electrical DC resistance RDC and radius
of the phase conductors (rC) and ground wires (GW) (rGW)
are indicated in the Fig. 3. The simulations were conducted
using a custom MATLAB program [18]. The numerical results
are divided into the following sections:

A. Series Resistance and Inductance of Sequence parameters

The calculated pul resistance and inductance for the positive
and zero sequences of the investigated transmission tower are
shown in Figs. 4 and 5, respectively. According to Fig. 4-(b),
the zero resistance is significantly higher than the positive re-
sistance illustrated in Fig. 4-(a) across the analyzed frequency
range. Additionally, the sequence resistance obtained for tower
Ton (shown in green lines) differs considerably from the other
two towers. The higher value of the zero resistance arises
from the identical phase angles of the zero sequence currents
flowing in the double-circuit transmission line. Consequently,
residual currents flow through both the earth and the ground

4
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GW

Circuit I

Circuit II

Soil

Circuit I Circuit II

[S]

(a) (b)

zero

positive

negative

Fig. 2: (a) Double-circuit transmission line with one ground wire (GW) located on a generic soil; (b) Zero (in red), positive (in blue) and
negative (in green) sequence circuits with some of their internal coupling inside each circuit (dashed lines) and external coupling between
circuits (solid lines).

Soil

1,
5

1,
5

5
3

17

3,67,2

10,8

1 2

3

45

6

7

0,0125705 m

         conductor 0,0917144         

0,004572 m

         ground wires 4,04513          

GW

(a)

3,23,26,4

4,
5

15
,5

1,
5

Soil

6 5 4321

7

0,0125705 m

         conductor 0,0917144         

0,004572 m

         ground wires 4,04513          

GW

(b)

Soil

20
8,
7

9,
3

8,
5

14,24

18,24

12,4

1

2

3

4

5

6

7

0,0125705 m

         conductor 0,0917144         

0,004572 m

         ground wires 4,04513          

GW

(c)

Fig. 3: Tower configurations used in this study: (a) Danube; (b) Flat and (c) Ton. (all measures in meters, not to scale)

wires [8]. Thus, this zero resistance accounts for the configura-
tion formed by the ground wires, transmission line resistance,
and earth-return impedance. Given that earth-return impedance
increases with frequency, the zero resistance is expected to
rise accordingly. Conversely, the positive resistance is smaller
because no loop forms in the circuit line. It is noteworthy that
the negative and positive resistances are identical.

Concerning the sequence inductance plotted in Fig. 5, it
can be observed that the positive inductance shown in Fig. 5-
(a) is smaller than the zero inductance depicted in Fig. 5-(b)
across the frequency range. The positive inductance exhibits
minimal variation with frequency because no loops are formed
between the ground wires and earth in the positive sequence.
In contrast, the zero inductance shows a more pronounced
variation, decreasing gradually as the frequency increases.

This behavior is attributed to the penetration depth of the
return currents flowing in the soil for the zero sequence,
which decreases with increasing frequency [8]. The Ton tower
exhibits the most divergent behavior compared to the other
towers, owing to its greater height and the larger distances
between the phase conductors.

B. Shunt Capacitance of the Sequence parameters

The sequence capacitance is plotted in Fig. 6. According
to this figure, the positive capacitance remains constant with
frequency, as depicted in Fig. 6-(a). This behavior is related
to the external capacitance, which is not affected by either
the frequency or the soil’s electrical parameters, depending
only on the geometrical parameters of the transmission line.
Furthermore, the positive capacitance is much higher than the

5
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(a) (b)

Fig. 4: Calculated pul resistance assuming FD soil of ρ0 = 1,000 Ω.m: (a) positive R++; (b) zero R00.

(a) (b)

Fig. 5: Calculated pul inductance assuming FD soil of ρ0 = 1,000 Ω.m: (a) positive L++; (b) zero L00.

(a) (b)

Fig. 6: Calculated pul capacitance assuming FD soil of ρ0 = 1,000 Ω.m: (a) positive C++; (b) zero C00.

zero capacitance, as illustrated in Fig. 6-(b). However, the zero
capacitance gradually decreases as the frequency increases due
to the ground-return admittance Y g added to the transversal
admittance Y t in (4). This behavior is expected since the
total capacitance decreases at higher frequencies when the
frequency dependence of the soil is taken into account in the
ground-return admittance, as detailed in [19] [see Figs. 21,
22, and 26]. Finally, the Ton tower has exhibited the most
divergent values due its higher distances between the phase
conductors compared to the other tower configurations.

C. Mutual impedance and Admittance between the Sequences
of one circuit

In the context of double-circuit transmission line topologies,
the untransposed configuration leads to coupling impedances
and admittances that must be considered for accurate sequence
circuit representation. These couplings exist due to the unequal
distances between phase conductors, ground wires and earth
[8]. Additionally, the unequal distance between the two circuits
result in coupling between the impedances and admittances in
the sequence circuits, as illustrated in Fig. 2. These coupling

6
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effects are crucial for the precise computation of fault loca-
tions, power flow analysis, and power quality assessments. In
order to assess the impact of the coupling withing one circuit,
the following normalized coupling factors are defined

∆1 =

∣∣∣∣∣ZI
0+

ZI
00

∣∣∣∣∣ ,∆2 =

∣∣∣∣∣ZI
0−

ZI
00

∣∣∣∣∣ ,∆3 =

∣∣∣∣∣ZI
+−

ZI
00

∣∣∣∣∣ ,∆4 =

∣∣∣∣∣ZI
−+

ZI
00

∣∣∣∣∣ ,
(37)

∆5 =

∣∣∣∣∣YI
0+

YI
00

∣∣∣∣∣ ,∆6 =

∣∣∣∣∣YI
0−

YI
00

∣∣∣∣∣ ,∆7 =

∣∣∣∣∣YI
+−

YI
00

∣∣∣∣∣ ,∆8 =

∣∣∣∣∣YI
−+

YI
00

∣∣∣∣∣ ,
(38)

where coupling factors from ∆1 to ∆4 assess the coupling
impedance based on the self zero impedance Z I

00 and those
from ∆5 to ∆8 assess the coupling admittance based on the
self zero admittance Y I

00. The calculated coupling factors ∆1

to ∆8 for each tower topology are plotted in Fig. 7.
According to this figure, the results demonstrate that the

coupling factors ∆1, ∆2, ∆3, and ∆4 do not exceed 4%
for zero impedance, indicating a slight dependence on the
frequency of the mutual magnetic coupling in the sequence
circuit. On the other hand, the coupling factors ∆5, ∆6, ∆7,
and ∆8 for zero admittance remain constant across the entire
frequency range. However, higher magnitudes are observed,
suggesting that the electric coupling in the sequence admit-
tances cannot be disregarded. Additionally, these coupling
factors are also dependent on the tower topology due to their
distances between the phase conductors and distance from
earth to the conductors.

D. Mutual impedance and Admittance between the Sequences
of both circuits

To investigate the effect of the electric and magnetic
coupling on the two sequence circuits of the double-circuit
transmission lines, the coupling factors (CF) between both
circuit are defined as follows

δ1 =

∣∣∣∣∣ZI,II
00

ZI
00

∣∣∣∣∣ , δ2 =

∣∣∣∣∣ZI,II
++

ZI
00

∣∣∣∣∣ , (39)

δ3 =

∣∣∣∣∣YI,II
00

YI
00

∣∣∣∣∣ , δ4 =

∣∣∣∣∣YI,II
++

YI
00

∣∣∣∣∣ . (40)

The coupling factors δ1 and δ2 calculate the magnetic
coupling based on the self zero impedance Z I

00, whereas δ3
and δ4 compute the electric coupling based on the self zero
admittance Y I

00. The coupling factors (CF) δ1, δ2, δ3, and δ4
for each tower topology are plotted in Fig. 8.

According to this figure, it is noted that δ1 exhibits high
CF values for both electric and magnetic coupling between
sequence circuits. Results demonstrate that the CF is ap-
proximately 60% at low frequencies and decreases gradually
with increasing frequency until it reaches 30%, indicating a
stronger relation between the two sequence circuits. However,
the coupling factor δ2 remains very small across the entire
frequency range. Regarding the coupling factors δ3 and δ4
for the self zero admittance, it is observed that δ3 ranges
between 20% and 30% at lower frequencies, depending on

the tower topology. Furthermore, the CF δ3 increases slightly
with increasing frequency but still represents a considerable
value. On the other hand, the CF δ4 remains constant across the
frequency range, not exceeding 5%. These results demonstrate
that the magnetic and electric coupling related to the zero
sequence between both circuits is stronger than that observed
for the positive sequence. As an alternative to reduce the cou-
pling effects between both sequence circuits, a transposition
configuration can be applied to the double-circuit transmission
line, resulting in decoupled sequence matrices [11], [12].

V. CONCLUSIONS

This paper investigated the sequence parameters of three
distinct double-circuit transmission lines (Danube, Flat, and
Ton), assuming an untransposed configuration, ground-return
effect on the longitudinal impedance and transversal admit-
tance matrices modeled by Nakagawa’s approach. Addition-
ally, the frequency dependence of the soil electrical parameters
was taken into account, with a low-frequency soil resistivity
of 1,000 Ω.m for a frequency range from 100 Hz to 1 MHz.

Firstly, the per-unit-length transmission line parameters
(resistance, inductance, and capacitance) for both zero and
positive sequences were calculated over that frequency range.
The results indicated that the zero-sequence resistance and
inductance are considerably higher than those for the positive
sequence across the frequency range. This occurs due to the
zero-sequence currents (same magnitude and phase) flowing
through the earth path and ground wire. Furthermore, the
sequence parameters are also significantly dependent on the
tower topology (height and distances of the phase conductors).
The positive-sequence capacitance is higher in magnitude but
is not affected by frequency. However, the zero-sequence
capacitance varies at high frequencies due to the ground-return
admittance.

Finally, the coupling factors for one circuit and between
both circuits were calculated for the double-circuit transmis-
sion lines. It is shown that the coupling factor within one
circuit, when normalized to the zero-sequence impedance,
can be neglected. However, the coupling factor for the zero-
sequence admittance can be considerable depending on the
tower topology. Regarding the coupling factor between the
two circuits, results indicated that the magnitude of the zero-
sequence impedance is significant across the frequency range.
These results confirm that the magnetic and electric coupling
between both circuits in the zero sequence is strong for
untransposed double-circuit overhead transmission lines. As a
contribution, this demonstrated that for untransposed double-
circuit transmission lines, the electric and magnetic coupling
between both circuits cannot be neglected when building the
sequence circuits, especially if high frequency events are
involved in the simulations.
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